Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.
This page intentionally left blank
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>About the Authors</td>
<td>v</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>1 Hematologic and Lymphoreticular System</td>
<td>1–29</td>
</tr>
<tr>
<td>2 Vascular System</td>
<td>30–45</td>
</tr>
<tr>
<td>3 The Heart</td>
<td>46–64</td>
</tr>
<tr>
<td>4 Respiratory System</td>
<td>65–84</td>
</tr>
<tr>
<td>5 Gastrointestinal System</td>
<td>85–123</td>
</tr>
<tr>
<td>6 Renal System</td>
<td>124–146</td>
</tr>
<tr>
<td>7 Endocrine System</td>
<td>147–175</td>
</tr>
<tr>
<td>8 Reproductive System</td>
<td>176–202</td>
</tr>
<tr>
<td>9 Nervous System</td>
<td>203–229</td>
</tr>
<tr>
<td>10 Musculoskeletal System</td>
<td>230–251</td>
</tr>
<tr>
<td>11 The Skin</td>
<td>252–259</td>
</tr>
<tr>
<td>12 Immune System</td>
<td>260–270</td>
</tr>
<tr>
<td>13 Chromosomal Disorders</td>
<td>271–277</td>
</tr>
<tr>
<td>Bibliography</td>
<td>278</td>
</tr>
<tr>
<td>Index</td>
<td>279–285</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Preface

When we began to prepare for the USMLE Step 1 early in our second year at Yale Medical School, we discovered that a myriad of sources was available for pathology review but none that were both comprehensive and organized in a fashion conducive to repetitive review. We found that the material in many of the resources was presented in outline form, which failed to organize the etiology, pathology, clinical findings, and treatment options of each disease in a consistent manner. Although we used the most highly rated pathology reviews, we still found ourselves combining information from multiple sources to create a more comprehensive and convenient review tool.

Lange Pathology Flash Cards are the result of our trials and tribulations while trying to learn pathology and review the subject for the boards. These cards offer the most complete, concise, and relevant high-yield information for the major diseases tested on the USMLE Step 1 and in the second-year pathology course. The content covers the most current and board-relevant information that can otherwise only be found by combining the content of several review sources. In this second edition, we have added more, up-to-date high-yield disease processes and key information that is currently being tested on the Step 1.

We are excited to present this high-yield pathology content in a format designed for active review. Each card provides a structured presentation of a specific disease and allows students to easily compare and contrast diseases. The introductory cards for each system describe the basic physiologic and/or pathophysiologic principles of the relevant structures and organs. Each disease-specific card contains both a clinical vignette and the characteristics of the disorder. The vignette appears on the front side of the card and frames the pertinent information in the context of a clinical application. The reverse side of the card includes information related to the etiology and epidemiology of the disease; classical or defining pathologic, pathophysiologic, or histologic
findings; clinical manifestations, classical presentations, and current medical treatments; and pearls. In addition, the most salient features of each disease are highlighted in bold throughout each card for rapid review purposes.

We would suggest using these cards as an adjunct to your pathology course materials early in your second year. Familiarizing yourself with these cards as you tackle your course will be immensely helpful to you during your Step 1 review. We would like to encourage you to jot down your own notes in the margins and make these cards your personal pathology review. We also encourage you to make your own cards for low-yield conditions that you identify.

We hope that this second edition of the *Lange Pathology Flash Cards* will help prepare you for the boards and serve as a resource that will bridge your basic pathology knowledge with the clinical aspects of disease that you will soon be encountering firsthand on the wards.

Best of luck with Step 1, and feel free to contact us with any suggestions to improve this study tool in the next edition.

Suzanne J. Baron, MD
sbaron@partners.org

Christoph I. Lee, MD
stophlee@stanford.edu
April 2009
We would like to thank the many editors at McGraw-Hill without whom this publication would not have become a reality.

We acknowledge the many physicians and basic science teaching faculty of the Yale University School of Medicine, Harvard Medical School, and the Stanford University School of Medicine who provided the foundation of knowledge and expertise for the relevant content in these review cards. We would like to thank our mentors, Drs. Howard Forman, Terry Desser, and Lawrence Young for their constant encouragement and guidance of our professional development.

Finally, we thank all of our family and friends who have provided constant reassurance and moral support throughout this enriching experience. Special thanks to Fran and Joe Baron, John and Jay Lee, Monique Mogensen, Bart Kenney, Bettina Lee, and Elena Paul.
Suzanne J. Baron, MD, earned an AB magna cum laude in psychology and biology from Harvard University and her MD from Yale University School of Medicine. She completed her internal medicine residency at Massachusetts General Hospital and is currently a cardiology fellow at Massachusetts General Hospital. Suzanne is an accomplished pianist and has published her research in peer-reviewed journals including JAMA and Circulation Research.

Christoph I. Lee, MD, earned an AB cum laude in English from Princeton University and his MD from Yale University School of Medicine. He is currently completing a residency in diagnostic radiology at Stanford University Hospital. In the past, Dr. Lee managed a global tuberculosis initiative for Ralph Nader and has published several original research articles regarding health policy and diagnostic radiology in peer-reviewed journals.
Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HIAA</td>
<td>5-hydroxyindoleacetic acid</td>
</tr>
<tr>
<td>ACA</td>
<td>anterior cerebral artery</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADH</td>
<td>antidiuretic hormone</td>
</tr>
<tr>
<td>AFP</td>
<td>alpha-fetoprotein</td>
</tr>
<tr>
<td>AIHA</td>
<td>autoimmune hemolytic anemia</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukemia</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine transaminase</td>
</tr>
<tr>
<td>AML</td>
<td>acute myelogenous leukemia</td>
</tr>
<tr>
<td>ANA</td>
<td>antinuclear antibody</td>
</tr>
<tr>
<td>ANCA</td>
<td>antineutrophil cytoplasmic antibody</td>
</tr>
<tr>
<td>Anti-TTG</td>
<td>anti-transglutaminase</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cells</td>
</tr>
<tr>
<td>APKD</td>
<td>adult polycystic kidney disease</td>
</tr>
<tr>
<td>ARDS</td>
<td>acute respiratory distress syndrome</td>
</tr>
<tr>
<td>ARF</td>
<td>acute renal failure</td>
</tr>
<tr>
<td>ASD</td>
<td>atrial septal defect</td>
</tr>
<tr>
<td>ASO</td>
<td>antistreptolysin O</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate transaminase</td>
</tr>
<tr>
<td>AZT</td>
<td>Zidovudine</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BPH</td>
<td>benign prostatic hypertrophy</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CALLA</td>
<td>common acute lymphoblastic leukemia antigen</td>
</tr>
<tr>
<td>c-ANCA</td>
<td>cytoplasmic antineutrophil cytoplasmic antibodies</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>CD4</td>
<td>clusters of differentiation</td>
</tr>
<tr>
<td>CEA</td>
<td>carcinoembryonic antigen</td>
</tr>
<tr>
<td>CF</td>
<td>cystic fibrosis</td>
</tr>
<tr>
<td>CFTR</td>
<td>cystic fibrosis transmembrane conductance regulator</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>chr</td>
<td>chromosome</td>
</tr>
<tr>
<td>CK</td>
<td>creatinine kinase</td>
</tr>
<tr>
<td>CK-MB</td>
<td>creatine kinase-myocardial band</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>chloride ion</td>
</tr>
<tr>
<td>CLL</td>
<td>chronic lymphocytic leukemia</td>
</tr>
<tr>
<td>CML</td>
<td>chronic myelogenous leukemia</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
</tbody>
</table>
CNS: central nervous system
CO: cardiac output
COPD: chronic obstructive pulmonary disease
CRF: corticotropin releasing factor
CSF: cerebrospinal fluid
CVA: costovertebral angle
CXR: chest x-ray
DES: diethylstilbestrol
DEXA: dual energy X-ray absorptiometry
DHA: dihydrotestosterone
DIC: disseminated intravascular coagulation
DIP: distal interphalangeal
DM: diabetes mellitus
DNA: deoxyribonucleic acid
dsDNA: double-stranded DNA
DVT: Deep venous thrombosis
EBV: Epstein-Barr virus
ECG: electrocardiogram
EDV: end-diastolic volume
EEG: Electroencephalogram
EPO: erythropoietin
ESR: erythrocyte sedimentation rate
ESRD: end-stage renal disease
FEV₁: forced expiratory volume in 1 second
FNA: Fine needle aspiration

FSH: follicle-stimulating hormone
FVC: forced vital capacity
GABA: Gamma-aminobutyric acid
GBM: glomerular basement membrane
G-CSF: granulocyte colony stimulating factor
GERD: gastroesophageal reflux disease
GFR: glomerular filtration rate
GGT: gamma glutamyl transpeptidase
GH: growth hormone
GHRH: growth hormone releasing hormone
GI: gastrointestinal
GnRH: gonadotropin releasing hormone
GU: genitourinary
HAV: hepatitis A virus
HBcAg: hepatitis B core antigen
HBeAg: hepatitis B e antigen
HBsAg: hepatitis B surface antigen
HBV: hepatitis B virus
hCG: human chorionic gonadotropin
HCO₃⁻: bicarbonate ion
Hct: hematocrit
HCV: hepatitis C virus
HDV: hepatitis D virus
HEV: hepatitis E virus
HGPRT: hypoxanthine-guanine phosphoribosyltransferase
HLA: human leukocyte antigen
HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A
HPV: human papilloma virus
HSV: Herpes simplex virus
HTN: hypertension
HUS: hemolytic uremic syndrome
IBD: inflammatory bowel disease
IgA: immunoglobulin A
IgE: immunoglobulin E
IgG: immunoglobulin G
IgM: immunoglobulin M
INH: isonicotinic acid hydrazide
IPKD: infantile polycystic kidney disease
IV: intravenous
IVC: inferior vena cava
JVD: jugular venous distention
JVP: jugular venous pressure
KSHV: Kaposi’s sarcoma-associated herpesvirus
LA: left atrium
LAD: left anterior descending coronary artery
LAP: leukocyte alkaline phosphatase
LDH: lactate dehydrogenase
LDL: low-density lipoprotein
LES: lower esophageal sphincter
LFTs: liver function tests
LH: luteinizing hormone
LLQ: left lower quadrant
LV: left ventricle
MAO: monoamine oxidase
MCA: middle cerebral artery
MCHC: mean corpuscular hemoglobin concentration
MCP: metacarpophalangeal
MCV: mean corpuscular volume
MDS: myelodysplastic syndrome
MEN: multiple endocrine neoplasias
MHC: major histocompatibility complex
MI: myocardial infarction
MLF: medial longitudinal fasciculus
MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRI: magnetic resonance imaging
MS: multiple sclerosis
MSH: melanocyte-stimulating hormone
MTP: metatarsopharyngeal
NADPH: nicotinamide adenine dinucleotide phosphate (reduced form)
NHL: non-Hodgkin lymphoma
NSAIDs: nonsteroidal anti-inflammatory drugs
OCP: oral contraceptive pills
OSA: obstructive sleep apnea
Erythrocytes

Development
• Hematopoietic stem cell \(\rightarrow\) proerythroblast \(\rightarrow\) reticulocyte \(\rightarrow\) erythrocyte.
• Mature erythrocytes contain no nucleus or cytoplasmic organelles; thus, energy is derived from anaerobic degradation of glucose.
• Lifespan is 120 days; old erythrocytes are removed from circulation by spleen and liver.

Structure
• Biconcave disk shape is maintained by submembrane cytoskeleton composed of spectrin, ankyrin, protein 4.1, and other proteins.
• Biconcave shape results in increased surface area to volume ratio, thereby enhancing gas exchange.

Function
• Involved in oxygen and carbon dioxide transport via hemoglobin.
Neoplasms of the Hematologic and Lymphoreticular System

Lymphomas
- Hodgkin Lymphoma
- Non-Hodgkin Lymphoma

Leukemias
- Chronic Lymphocytic Leukemia
- Acute Myeloid Leukemia
- Hairy Cell Leukemia
- Acute Lymphoblastic Leukemia
- Chronic Myelogenous Leukemia

Myeloproliferative Disorders
- Polycythemia Vera
- Myelofibrosis with Myeloid Metaplasia

Plasma Cell Dyscrasias
- Multiple Myeloma
- Waldenstrom Macroglobulinemia
Leukocytes

GRANULOCYTES

Neutrophil
• Structure: multilobed nucleus; granules containing lysozyme, myeloperoxidase, and hydrolytic enzymes
• Function: involved in acute inflammatory response

Basophil
• Structure: bilobed nucleus; dark blue granules containing heparin, histamine, leukotrienes
• Function: involved in mediating allergic reactions

Eosinophil
• Structure: bilobed nucleus; pinkish granules containing major basic protein, histaminase, and arylsulfatase
• Function: defends against parasitic infections; levels increased in asthma, allergic processes, neoplasm, collagen vascular disease

LYMPHOCYTES

B Cell
• Development: develops from lymphoblast in bone marrow; matures in bone marrow
• Structure: small cell with large, darkly staining nucleus
• Function: mediates humoral immune response; differentiates into antibody-producing plasma cells; can function as antigen-presenting cell via MHC II

T Cell
• Development: develops from lymphoblast in bone marrow; matures in thymus
• Structure: small cell with large, darkly staining nucleus
• Function: mediates cellular immune response; differentiates into cytotoxic T cells (MHC I, CD8), helper T cells (MHC II, CD4), and suppressor T cells
Disorders of Blood Coagulation

Clotting Factor Deficiencies
- Hemophilia A and B

Platelet Disorders
- Idiopathic and Thrombotic
 Thrombocytopenic Purpura
- von Willebrand Disease

Other Disorders
- Disseminated Intravascular Coagulation
- Hypercoagulable States
PLATELETS
- **Development**: derived from megakaryocytes in the bone marrow
- **Function**: involved in thrombogenesis; forms platelet plugs via adhesion and aggregation reactions; activates the coagulation cascade

COAGULATION CASCADE

Intrinsic Pathway

- Kallikrein
- XII → XIIa
- XI → Xla
- IX → IXa
- VIII → VIIIa
- X → Xa
- V → Va
- Prothrombin → Thrombin

Extrinsic Pathway

- Tissue Factor
- VIIIa → VIIa
- VII → Xa
- Thrombin
- Fibrinogen → Fibrin
- XIIIa → Stable Fibrin
A 26-year-old pregnant woman presents to your office for a checkup. She states that her pregnancy has been proceeding smoothly, although she has been feeling more tired than she expected. Her physical examination is largely unremarkable except for marked pallor. You order serum studies and find that she has decreased hematocrit, decreased ferritin, and increased total iron-binding capacity. Her peripheral blood smear shows red blood cells that are both microcytic and hypochromic. You reassure her that these findings are most likely associated with her pregnancy status and recommend iron supplements.
Iron Deficiency Anemia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Chronic blood loss, most often caused by gastrointestinal bleeding or menorrhagia; dietary deficiency (rare); malabsorption; pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Peripheral blood smear: Hypochromic microcytic erythrocytes</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Fatigue, pallor, and dyspnea during exercise
Lab findings: Decreased hematocrit, decreased serum iron, decreased serum ferritin, increased TIBC, decreased Fe/TIBC ratio (< 15%) |
| **Treatment** | Iron supplementation; identification of source of occult blood loss |
| **Notes** | **Plummer-Vinson syndrome** is a disease in which patients present with iron deficiency anemia, esophageal webs, and glossitis. It is associated with an increased risk for developing esophageal cancer.
Sideroblastic anemia is the result of defective heme biosynthesis within erythrocyte precursor cells. It can be caused by hereditary enzymatic defects or acquired defects (ie, alcohol or lead, MDS). Laboratory studies reveal increased iron and ferritin levels, but a normal TIBC. Ringed sideroblasts are present in the bone marrow. Treatment is directed at underlying cause as well as supportive with blood transfusions. |
A 46-year-old man presents to your office complaining of weakness and a “pins and needles” feeling in his extremities. You note that he is ataxic and has decreased vibration and position sense in both his arms and legs. Upon further examination, you also observe that his tongue is red and enlarged. When laboratory tests reveal a positive Schilling test and a macrocytic anemia, you question the patient’s diet habits, drinking habits, and history of abdominal surgery.
Megaloblastic Anemias

| Etiology | Vitamin B_{12} deficiency anemia (pernicious anemia): Autoimmune gastritis (results in the failure to produce intrinsic factor); malabsorption or vegetarian diet; gastric resection or resection of the ileum
| | Folate deficiency anemia: Malabsorption or dietary deficiency (often seen in alcoholics); pregnancy; pharmacologic agents (methotrexate, sulfa drugs, phenytoin, AZT) |
| Pathology | Vitamin B_{12} deficiency: Demyelination of the posterior and lateral columns of the spinal cord.
| | $Peripheral$ blood smear: pancytopenia; hypersegmented neutrophils; macrocytic erythrocytes
| | Folate deficiency: $Peripheral$ blood smear: pancytopenia; hypersegmented neutrophils; macrocytic erythrocytes |
| Clinical Manifestations | Vitamin B_{12} deficiency: Neurologic abnormalities (ataxia, impaired proprioception, and vibratory sensation); glossitis; symptoms of autoimmune gastritis.
| | Lab findings: Decreased Hct, decreased serum vitamin B_{12}, anti-intrinsic factor antibodies, abnormal Schilling test (tests for decreased absorption of oral vitamin B_{12}).
| | Folate deficiency: Glossitis and diarrhea. Lab findings: Decreased Hct, decreased red blood cell folate levels. |
| Treatment | Vitamin B_{12} deficiency: Vitamin B_{12} supplementation; intrinsic factor supplementation if anemia caused by autoimmune gastritis
| | Folate deficiency: Folic acid supplementation |
| Notes | 5 |
A 7-year-old girl is referred to your hematology practice by her pediatrician after several abnormal blood tests, which include an increased mean corpuscular hemoglobin concentration and increased red blood cell osmotic fragility. You discover that one of the child’s parents suffers from a genetic blood disorder and you begin to suspect that the child will most likely have to undergo surgery to treat her disorder.
Hereditary Spherocytosis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal dominant condition that causes a defect in an erythrocytic membrane protein (usually spectrin or ankyrin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Peripheral blood smear: Spherocytes (sphere-shaped erythrocytes with no central pallor)</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Splenomegaly; hemolytic anemia, which can lead to jaundice
Lab findings: Increased erythrocyte osmotic fragility, increased MCHC, reticulocytosis, normal MCV, normal Hgb |
| **Treatment** | Splenectomy; folate supplementation |
| **Notes** | Paroxysmal nocturnal hemoglobinuria is a stem cell disorder characterized by increased sensitivity of RBCs to complement-mediated lysis. Patients present with episodic morning hemoglobinuria (increased urine hemosiderin), hemolytic anemia, and venous thrombosis. Diagnosis is confirmed by positive Ham (acid serum) test and flow cytometry. |
A 35-year-old African American man comes to your office after noticing that his urine has become tea colored. He tells you that he has just returned from a trip to Africa where he had taken primaquine to guard against contracting malaria. Upon finding Heinz bodies on his peripheral blood smear, you suspect that his dark urine will likely resolve on its own shortly. You reassure the patient that his current condition is likely related to the primaquine and recommend no further testing.
Glucose-6-Phosphate Dehydrogenase Deficiency Anemia

| Etiology and Epidemiology | X-linked recessive disorder resulting in a deficiency of *glucose-6-phosphate dehydrogenase* (G6PD)
<table>
<thead>
<tr>
<th></th>
<th>Affects 10%–15% of African Americans</th>
</tr>
</thead>
</table>
| Pathology and Pathophysiology | *Peripheral blood smear: Bite cells; Heinz bodies* (clumps of oxidized hemoglobin within the RBC)
| | *Pathophysiology: G6PD* is an enzyme involved in the production of NADPH in the hexose monophosphate shunt pathway. NADPH is necessary for reduced glutathione, which protects hemoglobin from oxidative damage. When *G6PD* is deficient, reduced glutathione is absent. Without reduced glutathione, hemoglobin is oxidized and forms Heinz bodies in the RBC. Heinz bodies cause damage to the RBC membrane and these damaged RBCs are removed in the spleen, leading to anemia. |
| Clinical Manifestations | *Episodic hemolytic anemia* with hemoglobinuria occurring with ingestion of oxidant drugs (eg, primaquine, quinidine, quinine, sulfonamides, anti-TB drugs) or certain foods (ie, fava beans) |
| Treatment | Avoid oxidant drugs |
| Notes | Increased malarial resistance is noted with G6PD deficiency |
An 8-year-old African American boy presents to the emergency department complaining of severe pain in both legs. The pain began after the boy attended a pool party and spent much of the day swimming. He reports that he has suffered from severe bouts of back and chest pain in the past owing to a pre-existing medical condition. Routine laboratory studies demonstrate a severe anemia. You place the child on oxygen, begin aggressive intravenous fluid hydration and call the blood bank to prepare for a blood transfusion.
Sickle Cell Anemia

Etiology and Epidemiology
Autosomal recessive disorder resulting in the production of Hgb S. Hgb S arises from a mutation (substitution of valine for glutamine) in the gene coding for the β-globin chain of Hgb

8% of African Americans carry the gene for Hgb S

Pathology and Pathophysiology
Peripheral blood smear: Crescent-shaped RBCs; Howell-Jolly bodies; reticulocytosis

Pathophysiology: Hgb S polymerizes in hypoxic environments (as caused by infection, exercise, or dehydration), causing the RBC shape to become distorted and more susceptible to hemolysis

Clinical Manifestations
Chronic hemolytic anemia, which may lead to jaundice and leg ulcers; vaso-occlusive crises (Severe pain in the back or limbs because of microvasculature blockage by sickled cells.); autosplenectomy caused by repeated infarction; aplastic crises, usually provoked by B19 parvovirus infection; increased susceptibility to infection by encapsulated organisms (Salmonella)

Imaging: “Crew cut” on skull x-ray because of marrow expansion

Treatment
Transfusions, fluid resuscitation, pain control, and oxygen during hemolytic and vaso-occlusive crises; plasma exchange for severe vaso-occlusive crises (ie, stroke, acute chest syndrome); hydroxyurea (increases Hgb F levels) and bone marrow transplant for severe disease

Notes
Patients with hemoglobin C disease (different mutation in β-chain of Hgb) and sickle cell trait (heterozygous for the Hgb S gene) tend to have milder versions of sickle cell anemia.

The Hgb S gene provides resistance to Plasmodium falciparum malaria.
A 10-month-old boy from Greece presents with pallor and failure to thrive. During physical examination, you find that his spleen is enlarged and that he has an abnormal facial structure. You order a peripheral blood smear, which shows a microcytic, hypochromic anemia with target cells. You begin to suspect that this child may need blood transfusions for the rest of his life.
Thalassemias

Etiology and Epidemiology
- **α-Thalassemias:** Deletion of one or more of four genes coding the α-globin chain of Hgb
- **β-Thalassemias:** Point mutation in the β-globin gene resulting in reduced or absent synthesis of β-globin chain of Hgb

All thalassemias are relatively more common in people of Mediterranean ancestry

Pathology
- **α-Thalassemias:** *Peripheral blood smear:* hypochromic, microcytic erythrocytes; **target cells**
- **β-Thalassemias:** *Peripheral blood smear:* hypochromic, microcytic erythrocytes; **target cells; anisopoikilocytosis**

Clinical Manifestations
- **α-Thalassemias:** Four clinical variants: (1) α-thalassemia trait with 3–4 normal genes present—asymptomatic; (2) α-thalassemia trait with 2 normal genes present—mild anemia with decreased MCV; (3) **Hemoglobin H disease** with 1 normal gene present—**severe hemolytic anemia** with decreased MCV (< 70), presence of Hgb H (aggregation of excess β-chains), **spleenomegaly**; (4) hydrops fetalis with 0 normal genes present—stillborn fetus
- **β-Thalassemias:** Two clinical variants: (1) β-thalassemia minor (heterozygosity)—mild anemia with decreased MCV; (2) **β-thalassemia major** (homozygosity)—**severe hemolytic anemia** with decreased MCV, presenting in infancy, **increased Hgb F, spleenomegaly, bony abnormalities** (marrow expansion), **hemosiderosis** (owing to chronic transfusions), heart failure (owing to hemosiderosis)

Treatment
- **α-Thalassemias:** No treatment needed for α-thalassemia trait; transfusions for hemoglobin H disease
- **β-Thalassemias:** No treatment needed for β-thalassemia minor; transfusion and/or bone marrow transplantation for β-thalassemia major

Notes
A 30-year-old woman arrives at the emergency room complaining of fatigue and dark-colored urine. While obtaining the history of her present illness, you learn that she has been recovering from a recent bout of pneumonia, for which she had been treated appropriately by her primary care physician with a course of antibiotics. Physical examination reveals an enlarged spleen and slight scleral icterus. You obtain a blood sample and decide to order a direct Coomb test.
Autoimmune Hemolytic Anemias

Etiology

Warm antibody autoimmune hemolytic anemia (WAIHA): Caused by IgG antibodies that react against the RBC membrane; reason for formation of IgG antibodies may be idiopathic, or underlying disease such as SLE, CLL, or lymphomas.

Cold agglutinin disease (CAD): Caused by IgM antibodies that react against the I antigen on RBCs leading to phagocytosis of the RBC; reason for formation of IgM antibodies is often idiopathic, or may be a result of Waldenstrom macroglobulinemia, mononucleosis, or *Mycoplasma pneumoniae* infection.

Besides WAIHA and CAD, autoimmune hemolytic anemia can also be induced by pharmacologic agents (sulfa drugs, quinidine, rifampin).

Pathology

WAIHA: *Peripheral blood smear: spherocytes* (sphere-shaped erythrocytes with no central pallor); reticulocytosis.

CAD: *Peripheral blood smear: spherocytes* (sphere-shaped erythrocytes with no central pallor); reticulocytosis.

Clinical Manifestations

WAIHA: Severe hemolytic anemia, which may lead to jaundice; splenomegaly. *Lab findings:* Positive direct Coomb test, decreased Hct.

CAD: Mild hemolytic anemia (which may lead to jaundice) upon exposure to cold. *Lab findings:* Positive cold agglutinin test.

Treatment

WAIHA: Treat underlying disease; steroids and/or splenectomy.

CAD: Avoid cold environments.

Notes

The direct Coomb test checks for the presence of antibodies on the surface of RBCs. The indirect Coomb test assesses for the presence of free antibody in the patient’s serum.
A 28-year-old woman presents to the hospital in labor with her second child. As you prepare for the delivery, you discover that this woman had pregnancy complications associated with tearing of the placenta during the delivery of her first child. The mother and first child had been blood typed for Rh antigen during their stay at the hospital and records show that the mother is D-negative and the first child was D-positive. Concerned, you decide to administer anti-D IgG antiserum to the mother during her delivery to prevent the possibility of a serious hematologic complication for the second child.
Erythroblastosis Fetalis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>ABO incompatibility or Rh antigen incompatibility (usually fetal D antigen) between mother and fetus</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Peripheral blood smear:* Erythroblasts; reticulocytosis
Pathophysiology: **Maternal alloimmunization** to fetal red blood cell antigens (usually caused by exposure to fetal Rh antigens during prior pregnancy) results in maternal antibodies reacting against fetal RBCs |
| **Clinical Manifestations** | Severe **fetal hemolytic anemia**; extramedullary hematopoiesis; increased indirect bilirubin, resulting in jaundice and **kernicterus**; severe cases may result in **fetal heart failure** with generalized edema or in a stillbirth |
| **Treatment** | Transfusion
Preventive measures include giving **anti-D IgG** to D-negative mothers during delivery of a D-positive child |
| **Notes** | --- |
A 15-year-old girl presents to the emergency department with a petechial rash, bleeding of the oral mucosa, fatigue, and a history of recurrent sinus infections over the past 2 months. She does remember having had a bad flu-like virus about 3 months ago that caused her to miss 4 days of school. There is no hepatosplenomegaly on examination. Laboratory tests reveal anemia, neutropenia, and thrombocytopenia. There are no abnormal cell types seen on peripheral blood smear. You decide to admit the patient to the hospital and you schedule a bone marrow biopsy.
Aplastic Anemia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Idiopathic; radiation, benzene, or drugs (chloramphenicol, alkylating agents); idiopathic autoimmune dysfunction of cytotoxic T cells; viral infection (parvovirus B19, EBV, HIV, hepatitis C); auto-immune disorders (ie, SLE)</th>
</tr>
</thead>
</table>
| **Pathology** | *Bone marrow:* **Hypocellular** and demonstrating fatty change with no hematopoietic cells
Peripheral blood smear: **Pancytopenia** |
| **Clinical Manifestations** | Anemia presenting with **fatigue**, malaise, and **pallor**; neutropenia presenting with **infections**; thrombocytopenia presenting with **mucosal bleeding**, purpura, or **petechiae**; no hepatosplenomegaly |
| **Treatment** | Transfusion; administration of G-CSF or GM-CSF; allogenic bone marrow transplant; cessation of causative drug; immunosuppression with cyclosporine |

Notes
A 57-year-old woman with a history of rheumatoid arthritis presents to your office complaining of fatigue upon exertion. You note that she is pale and decide to send her for serum studies. Laboratory results reveal an anemia as well as low serum iron levels, a low TIBC, and mildly increased serum ferritin levels. You tell the patient your diagnosis and begin to discuss whether treatment is necessary.
Anemia of Chronic Inflammation

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Secondary to chronic systemic disorders, including rheumatoid arthritis, chronic infection (ie, HIV), or malignancy</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Peripheral blood smear:* **Normochromic, normocytic** erythrocytes
Pathophysiology: Increased cytokines and hepcidin in setting of inflammatory state leads to impaired iron utilization by bone marrow with resulting decreased erythropoiesis |
| **Clinical Manifestations** | Fatigue and pallor associated with **anemia**
Lab findings: Mildly decreased Hct, **low serum iron, low TIBC, normal to increased serum ferritin** (increased storage iron in marrow macrophages) |
| **Treatment** | Treat underlying disease; synthetic erythropoietin or blood transfusions if severe |
| **Notes** |
13 |
A 6-year-old boy presents to your office complaining of fatigue, fever, and a history of recurrent epistaxis (nose bleeds) and urinary tract infections. He has an enlarged liver and spleen and a petechial rash over his entire body. Concerned, you send him for some blood tests, which demonstrate pancytopenia with the presence of multiple blast forms. You fear that a bone marrow biopsy may demonstrate cells that would stain positive for TDT and CALLA.
Acute Lymphoblastic Leukemia (ALL)

| Etiology and Epidemiology | Risk factors include prior exposure to radiation and chemotherapy
Occurs most often in children with a median peak age of 10, but may also occur in the elderly |
|---------------------------|---|
| Pathology | ALL can be classified as either T cell or early B cell. Lymphoblastic surface antigens indicate the origin of the leukemia. B-cell antigens include **CALLA** (CD10), CD19, and CD20. T-cell antigens include CD2, CD5, and CD7. **Terminal deoxynucleotidyl transferase (TDT)** is a marker of immature T and B lymphocytes and is present in 95% of cases.
Bone marrow: **Hypercellular**; composed mostly of **lymphoblasts**; distorted architecture of marrow
Peripheral blood smear: **Pancytopenia** with lymphocytosis (excess **lymphoblasts**) |
| Clinical Manifestations | **Fatigue**; infections; **mucosal bleeding**; lymphadenopathy; hepatosplenomegaly; **bone pain**; cranial neuropathies |
| Treatment and Prognosis | Chemotherapy or bone marrow transplant,
Very responsive to therapy with a good prognosis |
| Notes | ALL is the most common childhood cancer. It also accounts for 80% of all childhood leukemias. |
A 52-year-old woman presents to your clinic complaining of a 2-week history of low-grade fever and weakness. Further evaluation reveals that she has suffered from various infections over the past 3 months. Upon physical examination, you note that she is pale with a petechial rash and that she has an enlarged spleen and liver. After a peripheral blood smear demonstrates pancytopenia with multiple myeloblasts, you immediately refer this patient to a hematologist/oncologist.
Acute Myelogenous Leukemia (AML)

Etiology and Epidemiology
Risk factors include Down syndrome and exposure to ionizing radiation, benzene, or chemotherapy
Associated with chromosomal translocations: **M3-t(15;17)**, **M2-t(8;21)**
Occurs most frequently in **middle-aged adults**

Pathology
There are **8 subgroups** (M0-M7), each associated with a specific neoplastic myeloid lineage (myelocyte, monocyte, megakaryocyte, erythrocyte) and a level of maturation

Bone marrow: **Hypercellular** with distorted architecture; **myeloblasts** specific to the subtype;
Auer rods (cytoplasmic granules) especially with M3 (acute promyelocytic leukemia)

Peripheral blood smear: **Pancytopenia** with **myeloblasts**

Clinical Manifestations
Fatigue; infection; bleeding (menorrhagia, nose bleeds); lymphadenopathy; hepatosplenomegaly; stroke caused by leukostasis (elevated blast count leads to occluded microcirculation)

Treatment and Prognosis
Chemotherapy or bone marrow transplant; **all-trans retinoic acid for M3** with t(15;17)
Prognosis fair: 60% remission, but only 25% of these patients remain disease free for 5 years

Notes
A 55-year-old man presents to your office complaining of a feeling of heaviness in his abdomen. He has had several infections over the past 6 months. Physical examination demonstrates a massively enlarged spleen and a peripheral blood smear reveals abnormal cells with filamentous projections. As you refer this patient to a hematologist/oncologist, you reassure him that his disease is very sensitive to treatment.
Hairy Cell Leukemia

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Etiology unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occurs mostly in middle-aged men</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Bone marrow: Interstitial infiltrate of hairy cells (B cells with hairlike projections that stain positive for TRAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peripheral blood smear: Pancytopenia with hairy cells</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th>Massive splenomegaly; hepatomegaly; infections</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment and Prognosis</th>
<th>Very sensitive to chemotherapy and other agents (2-chlorodeoxyadenosine)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>Other peripheral T-cell leukemias/lymphomas include the cutaneous T-cell lymphoid neoplasms (mycosis fungoides and Sézary syndrome), which are characterized by neoplastic CD4 T cells with cerebriform nuclei, and adult T-cell leukemia/lymphoma, which is associated with HTLV-1 infection.</th>
</tr>
</thead>
</table>
A 67-year-old man presents to your office for his annual checkup. You learn that he has been rather tired as of late and has had several nose bleeds over the past 6 months. Physical examination reveals shotty lymphadenopathy and mild hepatosplenomegaly. A complete blood count reveals an extremely high white blood cell count. You order a peripheral blood smear, which demonstrates multiple smudge cells, helping you to make a diagnosis.
Chronic Lymphocytic Leukemia (CLL)

| Etiology and Epidemiology | Associated with chromosomal abnormalities (trisomy 12, deletions of 13q, deletions of 11q)
<table>
<thead>
<tr>
<th></th>
<th>Most often occurs insidiously in men over the age of 60</th>
</tr>
</thead>
</table>
| Pathology | *Bone marrow:* Infiltration with **small lymphocytic cells** resembling normal mature **B lymphocytes** (they express **CD5**, which is normally seen in T lymphocytes)
| | *Peripheral blood smear:* **Smudge cells** (leukemic cells are sensitive to mechanical disruption occurring during slide preparation); lymphocytosis; normochromic, normocytic erythrocytes |
| Clinical Manifestations | **Lymphadenopathy**, hepatosplenomegaly, mucosal bleeding, and fatigue
| | May have few symptoms (indolent course)
| | Complications include warm **AIHA**, thrombocytopenia, and **hypogammaglobulinemia**, which lead to infections |
| Treatment and Prognosis | Chemotherapy to relieve symptoms, but **cure is rare**
| | Mean survival is 3–25 years after diagnosis depending on cytogenetic status |
| Notes | CLL is very similar to SLL (small lymphocytic lymphoma) |
A 44-year-old man presents to your clinic complaining of severe fatigue. Physical examination is relatively unremarkable except for an enlarged spleen. You send him to the laboratory for blood tests, which reveal multiple immature granulocytes on peripheral blood smear, a high WBC count, and low leukocyte alkaline phosphatase activity. Based on these test results, you begin to suspect that he may have a chromosomal abnormality.
Chronic Myelogenous Leukemia (CML)

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Associated with the Philadelphia chromosome t(9;22), which forms a hybrid gene (bcr-abl) that codes for a protein with tyrosine kinase activity. Occurs mostly in middle-aged people.</th>
</tr>
</thead>
</table>
| **Pathology** | Bone marrow: Hypercellular; increased myeloid precursor cells.
Peripheral blood smear: Leukocytosis with a mixture of mature and immature myeloid cells. |
| **Clinical Manifestations** | Presents with low-grade fever, fatigue, night sweats, and splenomegaly.
Lab findings: Leukocytosis (neutrophils and metamyelocytes), decreased LAP, increased serum B12, hyperuricemia. |
| **Treatment and Prognosis** | Chemotherapy (hydroxyurea, imatinib [a tyrosine kinase inhibitor]) or bone marrow transplantation.
Death usually occurs because of transformation into AML (blast crisis). |
| **Notes** | CML is considered a myeloproliferative disorder along with polycythemia vera, essential thrombocythemia, and myelofibrosis. |
A 54-year-old overweight man presents to your office complaining of headache and worsening vision over the last month. His past medical history includes hypertension and a recent hospital admission for deep vein thrombosis. He has no history of COPD, smoking, renal disease, or endocrine abnormalities. Physical examination demonstrates a blood pressure of 130/80, but is otherwise unremarkable. Blood tests reveal an increased hematocrit and increased RBC mass. To confirm your suspicions, you decide to order a test to determine serum erythropoietin levels.
Polycythemia Vera

| Etiology | Myeloproliferative disorder of unknown etiology
<table>
<thead>
<tr>
<th></th>
<th>Occurs most often in middle-aged, obese, hypertensive men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Bone marrow: Hypercellular with marked increase in erythroid precursor cells; increase in other hematopoietic elements (megakaryocytes, myelocytes) also present</td>
</tr>
</tbody>
</table>
| Clinical Manifestations | Splenomegaly; pruritus; symptoms associated with hyperviscosity (headache, blurry vision); thrombosis; bleeding
Lab findings: Increased Hct, increased RBC mass, decreased erythropoietin levels, increased WBCs, increased platelets, increased LAP, increased serum vitamin B\textsubscript{12} levels, hyperuricemia |
| Treatment | Phlebotomy; aspirin; hydroxyurea if thrombosis occurs |
| Notes | Polycythemia vera is considered a **myeloproliferative disorder** along with CML, essential thrombocytemia, and myelofibrosis.
Essential thrombocytemia is characterized by **thrombocytosis** and megakaryocytosis and presents with bleeding and thrombosis.
Secondary polycythemia refers to increased RBC mass owing to **increased erythropoietin** production caused by chronic hypoxia, renal disease, or Cushing syndrome. |
A 51-year-old man presents to the clinic with a chief complaint of increasing fatigue over the past 8 months. He states that he used to be very active, but finds that he tires now from walking up the stairs in his house. Blood tests demonstrate a low hematocrit and a peripheral blood smear reveals teardrop-shaped erythrocytes, large platelets, and granulocytic precursor cells. You suspect that he may also have extensive extramedullary hematopoiesis in his liver and spleen and fear that he may eventually have to undergo a bone marrow transplant.
Myelofibrosis with Myeloid Metaplasia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Increased secretion of platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) results in fibroblastic proliferation in the bone marrow</th>
</tr>
</thead>
</table>
| **Pathology** | *Bone marrow:* Replacement of bone marrow cavity with fibrous tissue; loss of hematopoietic precursor cells except for megakaryocytes (which are actually increased)
Liver and Spleen: Extramedullary hematopoiesis (owing to loss of bone marrow)
Peripheral blood smear: Teardrop-shaped erythrocytes; granulocyte precursor cells; nucleated RBCs; thrombocytosis with abnormal-looking platelets |
| **Clinical Manifestations** | Anemia presenting with fatigue and pallor; massive splenomegaly
Lab findings: Decreased Hct |
| **Treatment** | Bone marrow transplant; supportive care with transfusions |
| **Notes** | 20 |
A 22-year-old man presents to your office complaining of a painless lump in his neck. Upon further questioning, you discover that he has had a low-grade fever and drenching night sweats for the past 2 months. He also has lost 14 pounds over the past 8 weeks. Physical examination reveals unilateral cervical lymphadenopathy and splenomegaly. A lymph node biopsy reveals large multinucleated cells with prominent nucleoli resembling owl’s eyes. You immediately refer the patient to a hematologist/oncologist.
Hodgkin Lymphoma

Etiology and Epidemiology	Etiology unknown, but EBV infection has been implicated. Classic presentation is in a 20-year-old man, although Hodgkin actually has a bimodal age distribution of patients with a peak between 20–30 and a peak over age 50.
Pathology	*Lymph node:* Reed-Sternberg cell (multinucleated giant cell with eosinophilic nucleoli resembling owl’s eyes, believed to be of CD 30+ and CD 15+ B-cell origin). **Four histologic variants:** (1) **Lymphocyte predominance:** many lymphocytes, few Reed-Sternberg cells; (2) **Nodular sclerosis:** fibrous bands, variants of Reed-Sternberg cells called lacunar cells; (3) **Mixed cellularity:** eosinophils, plasma cells, Reed-Sternberg cells, fibrosis; (4) **Lymphocyte depletion:** few lymphocytes, many Reed-Sternberg cells, necrosis.
Clinical Manifestations	**Painless lymphadenopathy** usually in the neck (localized, single group of nodes); pruritus; splenomegaly. Constitutional symptoms (**B symptoms**): Low-grade fever, night sweats, weight loss.
Treatment and Prognosis	Radiation and chemotherapy. **Good prognosis** (80% cure) associated with nondisseminated disease, absence of B symptoms, and certain histologic types (lymphocyte predominance and nodular sclerosis), although patients with Hodgkin lymphoma are at risk for **second malignancies** (acute leukemia, breast cancer).
Notes	Hodgkin lymphoma tends to spread to contiguous lymph nodes. The Nodular Sclerosis histologic variant of Hodgkin lymphoma is more commonly seen in women.
A 57-year-old man presents to your office after noticing a large painless lump in his neck. Upon questioning, he tells you that he has been suffering from a low-grade fever over the past 3 months. He has also lost 10 pounds during that time. Physical examination reveals painless cervical and inguinal lymphadenopathy and hepatosplenomegaly. Blood tests reveal a mild anemia as well as elevated LDH levels. You decide to send him for a lymph node biopsy.
Non-Hodgkin Lymphoma (NHL)

| Etiology and Epidemiology | Chromosomal translocations: Burkitt lymphoma: t(8;14), results in overexpression of c-myc; follicular lymphoma: t(14;18), results in activation of bcl-2, most common
Viral infection: HIV, EBV (EBV associated with Burkitt lymphoma of the jaw)
Median age at diagnosis is 65; more common in males |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Lymph node: (1) Follicular: proliferation of cleaved cells in nodular pattern; (2) Burkitt: starry-sky appearance, noncleaved cells; (3) Small lymphocytic: widespread effacement of lymph node architecture by small mature lymphocytes, related to CLL (also positive for CD5 marker); (4) Diffuse large B cell: large cells with large, round nucleus; (5) other variants include mantle cell, marginal cell, and MALT lymphoma</td>
</tr>
</tbody>
</table>
| Clinical Manifestations | Hepatosplenomegaly; painless lymphadenopathy; fewer B symptoms than Hodgkin lymphoma
Lab findings: Increased LDH (used as prognostic marker), no hypergammaglobulinemia |
| Treatment and Prognosis | Chemotherapy and radiation; bone marrow transplantation for relapsing disease
Median survival is 6–8 years; prognosis worse for the elderly, those with disseminated disease and those with aggressive forms |
| Notes | NHL does not spread contiguously.
EBV infection is also associated with an increased risk for nasopharyngeal carcinoma. |
A 69-year-old man presents to the emergency department complaining of pain in his neck and back. Upon directed history, he also reveals that he has been extremely tired and has suffered from two urinary tract infections over the past 4 months. An x-ray of his back reveals fractures in the L2 and L3 vertebrae as well as punched-out lytic bone lesions in the posterior skull. Laboratory studies reveal a mild anemia as well as an elevated BUN and creatinine. You decide to admit him to the hematology/oncology service for further evaluation.
Multiple Myeloma

| **Etiology and Epidemiology** | Tumor cell arises from proliferation of **monoclonal plasma cells**, which produce **IgG**
Most common in people over the age of 60 |
|-------------------------------|---|

| **Pathology** | *Bone marrow*: Neoplastic plasma cells with **fried egg** appearance derived from B lymphocytes
Peripheral blood smear: **Rouleaux formation** of erythrocytes
Long bones: **Lytic lesions** (produced by osteoclast-activating factor secreted by neoplastic cells) |
|----------------|--|

| **Clinical Manifestations** | **Bone pain** and fractures; renal insufficiency; recurrent infections; primary amyloidosis
Imaging: **Punched-out lytic lesions** on radiographs
Lab findings: Monoclonal immunoglobulin spike (**M protein**) on serum protein electrophoresis, **Bence-Jones protein** (IgG light chains) **in urine**, **anemia**, increased ESR, **hypercalcemia**, hyperglobulinemia (IgG), azotemia |
|-----------------------------|--|

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Chemotherapy and autologous stem cell transplantation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>Monoclonal gammopathy of undetermined significance (MGUS) is an asymptomatic disease characterized by a monoclonal M protein spike < 3 g/dL and is associated with no Bence–Jones proteinuria, no lytic bone lesions, and no renal insufficiency. Patients with MGUS should be closely monitored since they are at higher risk to develop multiple myeloma or another lymphoproliferative disease.</th>
</tr>
</thead>
</table>
A 72-year-old man presents to your office complaining of fatigue, blurry vision, headaches, and weight loss over the past 6 months. Physical examination reveals hepatosplenomegaly, generalized lymphadenopathy, and retinal vascular dilatation. An abdominal x-ray and urinalysis are normal, although blood tests demonstrate anemia and increased serum viscosity. You decide to send this patient for a bone marrow biopsy.
Waldenstrom Macroglobulinemia

| **Etiology and Epidemiology** | Hyperviscosity syndrome most often associated with **IgM-producing plasmacytic lymphocytes** (hybrids of plasma cells and B lymphocytes)
Most frequently occurs in men over the age of 50 |
|-------------------------------|---|
| **Pathology** | *Bone marrow:* Mixture of **small lymphoid cells** showing differing degrees of plasma cell differentiation; **Dutcher bodies** (eosinophilic inclusion bodies in nucleus); **Russell bodies** (eosinophilic inclusion bodies in cytoplasm)
Peripheral blood smear: **Rouleaux formation** of erythrocytes |
| **Clinical Manifestations** | Fatigue; weakness; weight loss; **anemia; hepatosplenomegaly;** lymphadenopathy
Complications include **hyperviscosity syndrome** from circulating IgM (blurry vision, neurologic abnormalities, heart failure), bleeding, and **peripheral neuropathy** (from IgM deposition)
Lab findings: Monoclonal **IgM spike** seen on serum protein electrophoresis, **increased serum viscosity,** decreased Hct |
| **Treatment** | Chemotherapy; periodic plasmapheresis |
| **Notes** | 24 |
A 32-year-old woman is brought to the emergency room by a friend because of the onset of confusion and disorientation over the past day. Upon physical examination, you discover a generalized petechial rash, fever, and bilateral positive Babinski sign. You immediately order several blood tests, which show an elevated LDH, increased indirect bilirubin, thrombocytopenia, and anemia. Examination of a peripheral blood smear yields multiple reticulocytes and schistocytes. You admit the patient to the intensive care unit and you prepare for emergency plasmapheresis.
Idiopathic and Thrombotic Thrombocytopenic Purpura

| Etiology and Epidemiology | Idiopathic thrombocytopenic purpura (ITP): Antiplatelet IgG antibodies coat platelets, leading to phagocytosis by splenic macrophages. Occurs in children as acute self-limited reaction to viral infection, or can occur in adults as chronic disease.
Thrombotic thrombocytopenic purpura (TTP): Etiology unknown although viral infection, drugs, and autoimmune diseases have been implicated. Occurs most commonly in women between age 20 and 50. |
|---|---|
| Pathology | ITP: Bone marrow: occasionally there are increased megakaryocytes; Peripheral blood smear: thrombocytopenia with slightly enlarged platelets
TTP: Widespread hyaline microthrombi in the microvasculature with no inflammation; Peripheral blood smear: thrombocytopenia; schistocytes; reticulocytosis |
| Clinical Manifestations | ITP: Mucous membrane bleeding; epistaxis; petechiae; no splenomegaly. Lab findings: Decreased platelets, antiplatelet antibodies, increased bleeding time.
TTP: Neurologic deficits; fever; renal insufficiency; petechiae; microangiopathic hemolytic anemia. Lab findings: Decreased platelets, increased LDH and indirect bilirubin, azotemia, increased bleeding time, decreased Hct. |
| Treatment | ITP: Prednisone; splenectomy
TTP: Plasma exchange; steroids |
| Notes | 25 |
An 8-year-old boy presents to the emergency department with a swollen right knee. He denies a history of trauma to the knee. Physical examination reveals a warm, swollen, erythematous joint with a significant effusion. Upon taking a family history, you learn that two of the boy’s maternal uncles suffer from a bleeding disorder. Laboratory tests reveal a prolonged PTT, a normal PT, and a normal bleeding time. To provide the proper treatment, you immediately order a clotting factor assay.
Hemophilia A and B

| **Etiology** | Hemophilia A: X-linked recessive disorder resulting in a **deficiency of factor VIII**
Hemophilia B: X-linked recessive disorder resulting in a **deficiency of factor IX** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Lack of clotting factor VIII or IX results in an ineffective intrinsic pathway of coagulation</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | **Bleeding** into muscles and joints (hemarthrosis); easy bruising; GI bleeding
Lab findings: Prolonged PTT, normal PT, normal bleeding time, normal thrombin time |
| **Treatment** | Replace deficient clotting factor |
| **Notes** | **Vitamin K deficiency** is most commonly caused by liver disease, malabsorption, or warfarin administration. It results in a deficiency of factors II, VII, IX, and X and laboratory studies demonstrate a prolonged PT. |
A 7-year-old girl is brought to the emergency department because of uncontrollable bleeding following a deep laceration to her palm. Further questioning reveals that she has been taking aspirin for a viral illness, that she has a history of prolonged bleeding, and that her brother and mother both suffer from a bleeding disorder. Laboratory tests reveal a prolonged bleeding time, a prolonged PTT, and a normal PT. You suspect that this girl and her family are affected with the most common hereditary bleeding disorder and advise them all to avoid aspirin.
von Willebrand Disease

Etiology and Epidemiology

Autosomal dominant disease marked by a deficiency in von Willebrand factor (vWF). Acquired von Willebrand disease is associated with malignancy and autoimmune diseases and is related to decreased synthesis and increased clearance of vWF.

von Willebrand disease is the most common hereditary bleeding disorder (affects 1% of all people).

Pathophysiology

Lack of vWF results in impaired platelet adhesion to the subendothelium during vascular injury, thereby resulting in deficient platelet plug formation. Because vWF also acts as a carrier protein for factor VIII, deficient vWF results in a functional deficiency of factor VIII, thereby impairing the intrinsic pathway of coagulation.

Clinical Manifestations

Mucosal bleeding

Lab findings: Prolonged PTT, prolonged bleeding time, normal PT, normal thrombin time

Treatment

Avoid aspirin and other anticoagulants; desmopressin or factor VIII replacement if necessary

Notes

There are two bleeding disorders that result from deficiencies in platelet aggregation: (1) Glanzmann thrombasthenia, which results from a deficiency of glycoproteins IIb and IIIa, which are receptors for fibrinogen, and (2) Bernard–Soulier disease, which results from a deficiency of glycoprotein Ib, which serves as a receptor for vWF factor. Both disorders present with mucosal bleeding, a prolonged bleeding time, and normal PTT and PT.
A 33-year-old woman presents to your office because of a swollen, painful left calf. She denies any sort of recent trauma or fevers. She has no significant past medical history and her only medication is an oral contraceptive. Her family history is notable for the death of her mother at age 55 from a pulmonary embolism. During physical examination, you elicit a positive Homan sign with pain on dorsiflexion. Concerned, you order a Doppler ultrasound of the left lower extremity.
Hypercoagulable States

Etiology

Causes of inherited hypercoagulable states include **Factor V Leiden** (resistance to activated protein C), prothrombin mutation, protein C or S deficiency, antithrombin III deficiency, or antiphospholipid syndrome.

Causes of acquired hypercoaguable states include cancer, myeloproliferative disorders, pregnancy, nephrotic syndrome, or estrogens.

Pathology

Vein: Venous thrombus (dark red with pale gray fibrin strands, firm and attached to the vessel wall); venous inflammation

Clinical Manifestations

Symptoms of DVT or **pulmonary embolism**; stroke; recurrent miscarriages.

Lab findings: Increased D-dimer levels, increased PTT levels in antiphospholipid syndrome

Treatment

Anticoagulation (heparin for short term, warfarin for long term)

Notes

Virchow triad (endothelial injury, hypercoagulable state, venous stasis) predisposes to the formation of a deep vein thrombosis.
A 28-year-old woman, who is at 33-week gestation, presents to the emergency department with heavy vaginal bleeding. Ultrasound evaluation reveals that she is suffering from abruptio placentae (premature separation of the placenta from the uterus wall). As she is being prepared for delivery, you notice that there is blood seeping from her IV and venipuncture sites and that she has a petechial rash. Concerned, you immediately order several blood tests, which reveal a prolonged PT, prolonged PTT, prolonged bleeding time, prolonged thrombin time, thrombocytopenia, and elevated D-dimer levels. You begin transfusing platelets and fresh frozen plasma in the hope of stabilizing this life-threatening complication.
Disseminated Intravascular Coagulation (DIC)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Seen in connection with obstetric complications such as abruptio placentae or amniotic fluid embolus, malignancy, sepsis, trauma, acute pancreatitis, shock, and hemolytic transfusion reactions</th>
</tr>
</thead>
</table>
| Pathology and Pathophysiology | **Peripheral blood smear:** Schistocytes; thrombocytopenia
Pathophysiology: Excess thrombin activity leads to **activation of the coagulation and fibrinolytic cascades** and microthrombi, which subsequently **leads to consumption of platelets, fibrin, and clotting factors,** and thereby leads to bleeding
Vasculature: Microthrombi in microvasculature of multiple organs |
| Clinical Manifestations | **Bleeding and thrombosis** (manifested by bleeding from venipuncture sites, petechiae, and ischemia of the fingers and toes); microangiopathic hemolytic anemia
Lab findings: Prolonged PT and PTT, prolonged bleeding time and thrombin time, increased D-dimer levels, decreased fibrinogen, decreased platelets, decreased Hct |
| Treatment | Platelet transfusion, fresh frozen plasma and cryoprecipitate transfusion to replenish depleted clotting factors and fibrinogen |
| Notes | Prolonged PT, PTT, bleeding time, and thrombin time also occur in **coagulopathy of liver disease.** This disorder is not associated with microthrombi and can be treated with vitamin K. |
Physiology of Blood Vessels

Arteries
- Thick walled vessels under high pressure that carry the stressed volume.
- Divided into three types: (1) large, elastic arteries (eg, aorta); (2) medium-sized, muscular arteries comprising branches of aorta; and (3) small arteries within tissues and organs.
- Atherosclerosis affects largely elastic and muscular arteries.

Arterioles
- Smallest branches of the arteries.
- Principal sites of physiologic blood flow resistance.
- Site of the highest reduction in blood pressure and velocity.
- Hypertension affects primarily small muscular arteries and arterioles.

Capillaries
- Arise from arterioles and comprise the largest total cross-sectional area and surface area in the cardiovascular system.
- Lined by endothelial cells and supported by a thin basement membrane. Of the note, the media is absent.
- Slow flow, high surface area, and thin walls allow rapid exchange of materials between the blood and tissue.

Veins
- Large-caliber, thin-walled vessels under low pressure.
- Contain the highest proportion of blood in the cardiovascular system, and carry the unstressed volume.
- Have poor support and are predisposed to compression, dilatation, and invasion by tumors and inflammation.
A 45-year-old obese white man presents to the clinic for an annual checkup. He has no complaints other than occasional headaches. During the history, you find that he is a smoker and has a family history of heart disease. His physical examination is significant for mild obesity and a blood pressure of 160/100. You suggest lifestyle changes including weight loss, a low-salt diet, and smoking cessation, and you also prescribe hydrochlorothiazide to treat his condition.
Essential and Secondary Hypertension

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Primary (idiopathic) (90%): Risk factors include old age, race, diabetes, smoking, obesity, and positive family history</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary (10%): Caused by renal parenchymal disease, renovascular disease, Conn syndrome, Cushing syndrome, pheochromocytoma, OSA, and drug reactions (OCP, NSAIDS, steroids)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology and Pathophysiology</th>
<th>Microscopic: Hyaline thickening of vessels; atherosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pathophysiology: Primary (essential) HTN has been associated with increased cardiac output and increased total peripheral resistance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th>Usually asymptomatic; can be associated with occasional headaches or palpitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complications include CAD, MI, CVA, CHF, peripheral vascular disease, aortic dissection, retinopathy, and renal failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Reduce blood pressure to < 140/90 mm Hg with lifestyle changes and antihypertensive therapy; treat underlying causes of secondary hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lifestyle changes: Weight loss, exercise, reduce salt intake, smoking cessation, and moderate alcohol intake</td>
</tr>
<tr>
<td></td>
<td>Pharmacologic agents: ACE inhibitors, calcium antagonists, β-blockers, thiazide diuretics, α-blockers</td>
</tr>
</tbody>
</table>

| Notes | Hypertensive renal disease can present with nephritic syndrome and is associated with overstimulation of the renin-angiotensin system. |
A 30-year-old African American man presents with recent-onset headaches, blurred vision, and dyspnea. On physical examination, he appears very ill and has difficulty concentrating and answering your questions. You see cottonwool spots on a funduscopic examination, a displaced forceful heart beat, and a blood pressure reading of 190/130. You immediately place the patient on IV sodium nitroprusside treatment.
Malignant Hypertension

| **Etiology and Epidemiology** | Results from an accelerated course of essential or secondary hypertension
More common in young **African American men** |
|-------------------------------|--|
| **Pathology** | *Arteriole: Hyperplastic arteriosclerosis* (concentric, laminated **onionskin thickening** of arterial walls accompanied by necrotizing arteriolitis [fibrinoid deposition in arteriole walls with necrosis and inflammation])
Can result in other pathologic conditions including LV hypertrophy and failure and **malignant nephrosclerosis** (ruptured glomerular capillaries causing flea-bitten kidney) |
| **Clinical Manifestations** | Presents with **headache**, altered mental status, blurred vision, and dyspnea
Physical examination shows displaced forceful cardiac apex beat, presence of S4, **papilledema**, **retinal hemorrhages** and exudates, and **marked diastolic pressure increase** (> 120 mm Hg) |
| **Treatment and Prognosis** | Initial lowering of blood pressure with IV agents (Nipride, hydralazine, labetalol) followed by strict blood pressure control with oral agents
Often can result in an early death |
| **Notes** | **Hyaline arteriosclerosis** is associated with essential HTN or diabetes and involves hyaline thickening or proliferative changes of small arteries and arterioles, especially in the kidney (benign nephrosclerosis). |
A 40-year-old white man presents to your office complaining of sharp chest pains radiating to his shoulder during strenuous physical activities. On further questioning, he divulges that he has painful muscle cramps in his legs when running on the treadmill. Both his chest pains and leg cramps are relieved by rest. Taking a full history, you find that his father died of an MI in his early 50s and two paternal uncles experienced the same fate. On physical examination, you find yellow nodules under both eyelids. You send him for laboratory studies including triglyceride and cholesterol levels to confirm your diagnosis.
Atherosclerosis

Etiology
Risk factors include **smoking**, HTN, diabetes, **hypercholesterolemia** (increased LDL), positive family history, **old age, male gender, postmenopausal status in women**, hyperuricemia, and oral contraceptive use.

Pathology
Artery: Progresses from **fatty streaks** (lipid-laden foam cell accumulations in intima) to proliferative plaques to complex atheromas.

Atheroma: Central core of cholesterol and foam cells (lipid-laden macrophages) covered by fibrous cap; atheromas may be complicated by overlying thrombus formation, ulceration, or calcification of plaque; usually present in elastic arteries and medium/large muscular arteries.

Clinical Manifestations
Often asymptomatic; can present with **angina** or **claudication** (pain in muscles during exercise, relieved by rest).

Complications include aneurysms, MI, stroke, bowel ischemia, renal artery ischemia, peripheral vascular occlusive disease, and emboli of overlying thrombus or of plaque itself.

Treatment
Lipid-lowering agents (eg, HMG-CoA reductase inhibitor).

Notes
Xanthomas are yellow plaques or nodules of the skin. They are composed of lipid-laden macrophages and are associated with hypercholesterolemia.
A 55-year-old man presents to the emergency room with intense pain in the back, abdomen, and groin. He was brought by ambulance after feeling nauseated and suddenly fainting. On physical examination, he is pale, sweating profusely, and hypotensive. You also note a pulsatile mass in the mid-abdomen. As you begin to give the patient fluids and prepare him for emergency imaging, you call for a vascular surgery consult to evaluate this patient for surgery.
Etiology and Epidemiology

Associated with atherosclerosis, CAD, trauma, familial predisposition, and cystic medial necrosis. Occurs more frequently in men over the age of 50.

Pathology

Artery: Usually found in the **descending aorta** below the renal arteries; occurs in areas of **wall weakening** (atherosclerotic plaque can destroy media) or in localized dilatations of arteries and veins; saccular outpouching often filled with atherosclerotic plaque or thrombus.

Clinical Manifestations

Usually asymptomatic until rupture; may present with pulsating, painless upper abdominal mass; if ruptured, will present with **severe tearing abdominal pain radiating to the back** and hypotension. Complications include occlusion of renal, iliac, and/or mesenteric arteries with thrombus, emboli, or rupture.

Imaging: Double-barrel lumen of aorta.

Treatment

Surgical repair if rapidly growing aneurysm of if > 5.5 cm; blood pressure control with β-blockers and ACE-inhibitors; smoking cessation; lipid-lowering treatment.

Notes

Syphilitic aneurysm is associated with tertiary syphilis. The blood supply of the aorta (vasa vasorum) is disrupted, resulting in aneurysm of **ascending aorta** or aortic arch with a **tree-bark** gross appearance of aorta and aortic valve incompetence.
A 30-year-old man with Marfan syndrome presents to the emergency room with severe, sudden, tearing chest pain radiating to the abdomen and back. The pain has progressively shifted downward over the last several hours. On physical examination, he is found to have asymmetric pulses and a pericardial friction rub. ECG studies are normal and angiography shows an ascending aortic abnormality. You schedule the patient for immediate surgical repair.
Aortic Dissection

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Associated with hypertension, trauma, Marfan syndrome, Ehlers-Danlos syndrome, coarctation of the aorta, bicuspid aortic valve, and last trimester of pregnancy; there is no association with atherosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Gross: Tear in aortic intima allowing formation of intramural hematoma; possible presence of cystic medial necrosis (lesion predisposing to aortic dissection characterized by separation of elastic and muscular elements of media)</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Presents with **sudden, severe, tearing left chest pain**, often radiating through the back; **pain shifts downward** with time
Complications include aortic rupture, causing hemopericardium, cardiac tamponade, and death |
| **Treatment** | Surgical repair if dissection involves ascending aorta or if there is significant branch artery involvement; strict heart rate and blood pressure control with β-blockers and ACE-inhibitors |
| **Notes** | |

35
A 45-year-old man presents to the clinic complaining of 1 month of diffuse abdominal pain with occasional nausea and vomiting. He also reports generalized malaise and a weight loss of 15 pounds over the last 4 months. Upon further history, you discover that he has hepatitis B. Physical examination is notable for palpable purpura. Serum studies show an elevated ESR and an increased WBC count. You suspect that a vessel biopsy would reveal necrotizing arteritis and you decide to start the patient on prednisone.
Polyarteritis Nodosa

| Etiology and Epidemiology | Etiology unknown, but associated with HBV infection in 30% of patients
Primarily affects **middle-aged men**, but can occur in any age group of both sexes |
|---------------------------|--|
| Pathology | *Gross:* Affects **small- or medium-sized muscular arteries**, especially at branch points of vessels of the kidney, heart, liver, or GI tract; lesions are of **different ages**
Microscopic: **Transmural** inflammation of arterial wall with neutrophil, eosinophil, and mononuclear infiltrate; **fibrinoid necrosis** may be present |
| Clinical Manifestations | **Fever**; **weight loss**; malaise; **abdominal pain** with associated nausea and vomiting; **arthralgia**; renal failure; **peripheral neuropathy**; hypertension; cottonwool spots (retinal occlusion); myocarditis; pericarditis; palpable purpura
Lab findings: **Elevated ESR**, leukocytosis |
| Treatment | Corticosteroids; azathioprine; cyclophosphamide; antiviral therapy for HBV related disease |
| Notes | **Churg-Strauss syndrome** is another necrotizing vasculitis affecting small and medium vessels. Clinically, it presents with the triad of pulmonary vasculature involvement, peripheral fluctuating eosinophilia, and late-onset asthma unresponsive to bronchodilators. Laboratory studies reveal a positive ANCA (c-ANCA or p-ANCA) and eosinophilia. It is treated with high-dose corticosteroids. |
A 40-year-old man presents to the emergency room after coughing up blood. He has a history of chronic sinusitis and recurrent otitis media over the past decade. CXR reveals multiple nodules and multilocular, irregular cavities. Urinalysis demonstrates hematuria. When serum studies reveal a markedly elevated ESR and the presence of c-ANCA, you decide to start the patient on a combination of cyclophosphamide and prednisone.
Wegener Granulomatosis

| Etiology and Epidemiology | Caused by an immunologic mechanism (perhaps hypersensitivity reaction)
Tends to affect men between the ages of 30 and 60, but can occur at any age |

| Pathology | **Gross:** Vascular granulomatous lesions in the upper respiratory tract, lungs, and kidney
Microscopic: Necrotizing granulomas with necrotic center surrounded by lymphocytes, macrophages, and giant cells in vascular walls; granulomatous vasculitis with inflammatory infiltrate surrounded by fibroplastic proliferation; rapidly progressive glomerulonephritis |

| Clinical Manifestations | Perforation of nasal septum; chronic sinusitis; otitis media; dyspnea; hemoptysis; hematuria; rash; myalgias; increased risk of DVTs
Complications include renal failure (nephritic syndrome) and deafness
Imaging: CXR shows large nodular densities
Lab findings: c-ANCA positive, RBCs and/or RBC casts in urine |

| Treatment | Cyclophosphamide and prednisone for initial therapy; methotrexate as maintenance therapy |

| Notes | **Microscopic Polyangiitis** is a necrotizing small-vessel vasculitis that presents with glomerulonephritis and pulmonary involvement. Biopsy demonstrates a necrotizing pauci-immune inflammation of small vessels without granulomas. This disease is associated with a positive p-ANCA and is treated with cyclophosphamide and corticosteroids. |
A 70-year-old white woman presents to the clinic complaining of severe unilateral headaches and transient blurry vision. Upon physical examination, you find that there is pain upon palpation of her temples. When laboratory tests reveal an elevated ESR, you initiate treatment with prednisone to prevent possible blindness. You also ask for an ophthalmological consult and you order a temporal artery biopsy, which you suspect will reveal granulomatous inflammation and the presence of giant cells.
Giant Cell Arteritides—Takayasu Arteritis and Temporal Arteritis

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Takayasu arteritis (Tak): Etiology unknown, although immune mechanisms are suspected; mostly affects young Asian women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temporal arteritis (Temp): Etiology unknown, although T-cell–mediated injury has been suggested; usually affects elderly women</td>
</tr>
<tr>
<td>Pathology</td>
<td>Tak: Gross: disease of medium and large arteries resulting in thickening of aortic arch or proximal great vessels and thus vascular insufficiency. Microscopic: mononuclear infiltrate with perivascular cuffing of vasa vasorum in adventitia and media and granulomatous changes with giant cells.</td>
</tr>
<tr>
<td></td>
<td>Temp: Gross: affects small- and medium-sized arteries, usually branches of carotid artery (especially temporal artery). Microscopic: granulomatous inflammation of media with mononuclear infiltrate; giant cells.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Tak: Fever; weak pulses in upper extremities ("pulseless disease"); arthralgias; syncope; skin nodules; night sweats; claudication; visual and neurologic disturbances</td>
</tr>
<tr>
<td></td>
<td>Temp: Unilateral throbbing headache; tender nodules along temporal artery course; jaw claudication (pain when chewing); impaired vision (because of occlusion of ophthalmic artery); 50% of patients have systemic polymyalgia rheumatica (proximal muscle pain and morning stiffness, most commonly seen in elderly)</td>
</tr>
<tr>
<td></td>
<td>Lab findings: Markedly elevated ESR (for both Tak and Temp)</td>
</tr>
<tr>
<td>Treatment</td>
<td>Corticosteroids</td>
</tr>
</tbody>
</table>

| Notes | 38 |
A 6-year-old Japanese boy presents to the emergency room with high fever, malaise, and severe conjunctivitis. Physical examination is significant for congested conjunctiva, oral mucosa lesions, cervical lymphadenopathy, and erythema of the palms and soles of his feet. To prevent possible coronary aneurysm, you admit the child to the hospital and begin treatment with IV gamma globulin, but you reassure the mother that this condition usually resolves on its own.
Kawasaki Disease (Mucocutaneous Lymph Node Syndrome)

| **Etiology and Epidemiology** | Etiology unknown, although defect in immune system regulation is suspected
Usually affects **infants and young children** |
|-------------------------------|---|
| **Pathology** | *Gross:* Affects **small- and medium-sized vessels** (including coronary arteries)
Microscopic: Transmural inflammation and necrosis of vessel wall with inflammatory infiltrate |
| **Clinical Manifestations** | **Fever;** congested conjunctiva; **mucocutaneous lesions** (oral mucosa); cervical lymphadenitis (usually 1 neck node); edema of hands and feet; **erythema of palms and soles of feet**
Complications include **coronary artery aneurysms**, which can rupture and lead to death |
| **Treatment and Prognosis** | Aspirin; IV gamma globulin (prevents coronary aneurysm)
Disease is usually self-limited |
| **Notes** | 39 |
A 32-year-old male presents to your clinic complaining of arthralgias and palpable purpura on his lower extremities. He had been recovering from a recent bout of cellulitis, for which he had been taking amoxicillin. Laboratory studies demonstrate an elevated ESR as well as decreased complement levels. As you prepare the patient for a skin biopsy to confirm your suspicions, you inform him that you suspect that his cellulitis and antibiotics may be related to his current condition.
Leukocytoclastic (Hypersensitivity) Vasculitis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Exact etiology unknown, but thought to be caused by immune complex deposition in small vessels precipitated by drug reactions, bacterial infections, tumor, or other antigens; may be component of other diseases (Henoch-Schönlein purpura, connective tissue disorders)</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Pathophysiology:** Caused by type III hypersensitivity reaction
Gross: Affects small vessels (arterioles, capillaries, venules) especially of skin, lungs, heart, GI tract, muscle, and kidneys; lesions of same age
Microscopic: Fibrinoid necrosis of vascular media with neutrophil infiltration, which become fragmented (leukocytoclasia); no immune deposits |
| **Clinical Manifestations** | Palpable purpura; hemoptysis; arthralgias; hematuria and proteinuria; GI bleeding; myalgias
Lab findings: Elevated ESR, decreased complement levels |
| **Treatment** | Withdrawal of offending agent; steroids |
| **Notes** | **Henoch-Schönlein purpura** is a vascular disorder affecting children and typically follows a viral URI or a streptococcal infection. It is histopathologically similar to leukocytoclastic vasculitis and is also associated with IgA nephropathy with mesangial IgA deposits. Clinically, it is manifest as palpable purpura on the arms, legs, and buttocks, colicky abdominal pain, arthralgias, and renal involvement, which varies from mild proteinuria to ESRD. It is treated supportively in mild cases or with steroids in severe cases with significant renal involvement. |
A 52-year-old female presents to an urgent care clinic complaining of weakness and joint aches. Her past medical history is notable for hepatitis C infection. Review of systems reveals the presence of diffuse abdominal pain, dark urine, and peripheral neuropathy. Physical examination is notable for a lacy rash on bilateral calves as well as 1+ pitting edema. A urinalysis reveals the presence of hematuria and proteinuria. As you send off more laboratory studies to confirm your suspected diagnosis, you start the patient on immunosuppressive therapy with prednisone.
<table>
<thead>
<tr>
<th>Cryoglobulinemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology and</td>
</tr>
<tr>
<td>Epidemiology</td>
</tr>
<tr>
<td>Pathology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Clinical Manifestations</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>
A 30-year-old man presents to the emergency room with a cold, pale left foot with absent pedal pulse. He complains of loss of feeling in his left foot after several months of painful bouts in the involved area. He has smoked two packs of cigarettes a day for the past 10 years. You order an arterial biopsy of the affected region, which demonstrates intimal proliferation and thrombi with inflammatory infiltrates. You explain to the patient that the condition is associated with his smoking and that the most effective treatment is smoking cessation.
Thromboangiitis Obliterans (Buerger Disease)

| Etiology and Epidemiology | Etiology unknown, although there is a strong association with **smoking**
Most frequent in **young men** between the ages of 25 and 50 |
|---------------------------|---|
| Pathology | **Gross:** Segmental **vasculitis** of **small- and medium-sized peripheral arteries** (especially the tibial and radial arteries) and veins
Microscopic: **Transmural inflammation** with acute and chronic inflammatory infiltrate; thrombosis of lumen with **microabscesses** surrounded by granulomatous inflammation |
Clinical Manifestations	Intermittent claudication; superficial nodular phlebitis; Raynaud phenomenon; severe painful **ischemic attacks in extremities** leading to ulceration or even **gangrene**
Treatment	**Smoking cessation;** sympathectomy to prevent vasospasm
Notes	
A 20-year-old man presents to the clinic with a several-month history of headaches, ataxia, and deteriorating vision. Concerned about a CNS process, you order an emergency MRI of the head and find multiple cysts throughout the cerebellum and brainstem consistent with hemangioblastomas. You begin to suspect that this patient has a genetic disorder involving chromosome 3 that will predispose him to renal cell carcinoma and other neoplasms.
von Hippel-Lindau Disease

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal dominant disorder, resulting in deletion of VHL gene (tumor suppressor gene) on chromosome 3p</th>
</tr>
</thead>
</table>
| **Pathology** | **Hemangioblastomas** (vascular neoplasm associated with large cyst) or cavernous hemangiomas of the **cerebellum**, **brain stem**, and **retina**
| | Adenomas and cysts of liver, kidneys, and pancreas |
| **Clinical Manifestations** | Initially presents with headaches, ataxia, or loss of vision
| | Associated with increased incidence of **renal cell carcinoma**, pheochromocytoma, and ocular and CNS hemangioblastomas |
| **Treatment** | Surgical removal of tumor and radiation therapy |
| **Notes** | **Capillary hemangioma** is a malformation of a cluster of capillary-like channels filled with blood. It is the most common tumor of infancy and is responsible for port wine stain birthmarks.
| | **Cavernous hemangioma** consists of a large vascular space filled with blood. |
A 2-year-old Mormon girl in Utah is brought into your office by her mother for the first time since birth. She presents with multiple small telangiectasias of the skin and oral and nasal mucosa. Her nasal lesions are open and bleeding. The patient’s mother divulges that the girl has had more frequent dark black stools over the past couple of months. When questioned about family history, the mother reports that the child’s father suffers from frequent nose bleeds and blood in his stools. You suspect that this child’s condition is caused by an autosomal dominant genetic disorder.
Osler-Weber-Rendu Syndrome (Hereditary Hemorrhagic Telangiectasia)

| **Etiology and Epidemiology** | Autosomal dominant disorder resulting in mutations in TGF-β binding proteins
<table>
<thead>
<tr>
<th></th>
<th>Seen with increased frequency in Utah Mormons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Localized dilatation and convolution of venules and capillaries of the skin and mucous membranes of the oral cavity, respiratory tract, GI tract, and urinary tract</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Recurrent hemorrhage from skin and mucous membrane lesions
| | Complications include GI bleeding and epistaxis |
| | *Lab findings:* Normocytic, normochromic anemia |
| **Treatment** | Nasal packing; cauterization; estrogens to control epistaxis |
| **Notes** | *Sturge-Weber syndrome* is a congenital disorder associated with ipsilateral port wine stain of the face, glaucoma, and hemangiomatous masses on the meninges. It is manifest clinically by severe mental retardation, seizures, and retinal detachment. |
A 35-year-old HIV-positive man presents to the clinic with a 10-pound weight loss and widely disseminated, painless, reddish-purple skin lesions on his face, arms, and trunk. He also notes dark stool recently and states that he has been coughing up blood. You immediately recognize the condition and set the patient up for both a colonoscopy and bronchoscopy to assess possible visceral involvement. Meanwhile, you decide to adjust his HIV therapy to try and reduce his HIV viral load and you explain to him that he will most likely need chemotherapy to treat this condition.
Kaposi Sarcoma

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Etiology unknown; however, viral origin and association with immune status are being investigated. Three variants: (1) Classic KS: seen in older men of Ashkenazi Jewish or Mediterranean descent; (2) Endemic (African) KS: seen in young African men and children; (3) Epidemic KS: caused by human herpes virus type 8; associated with AIDS, especially in homosexual men with low CD4 counts.</th>
</tr>
</thead>
</table>
| **Pathology** | **Gross**: Reddish macules that become raised plaques and nodules over time; begins in skin, but can spread to lymph nodes and viscera (ie, lungs and GI tract)
 | **Microscopic**: Dilated blood vessels with an endothelial mononuclear infiltrate; will progress to see spindle cells with hyaline globules, mitotic figures, and hemosiderin pigment |
| **Clinical Manifestations** | **Painless, reddish-purple, raised plaques** and firm nonpruritic nodules; lymphadenopathy; hemoptysis; dyspnea; abdominal pain and GI bleeding
 | **Lab findings**: Specific KSHV antibodies present 70%-90% of time |
| **Treatment** | Reduce HIV viral load and raise CD4 count with antiviral therapy. Treat limited disease with intralesional vinblastine or topical treatments. Treat systemic disease with chemotherapy. |
| **Notes** | Kaposi sarcoma, non-Hodgkin Lymphoma, CNS lymphomas, and cervical cancer are cancers commonly associated with AIDS. |
Physiologic Principles of Cardiac Output

Cardiac Output (CO)
- CO is equal to the product of stroke volume (SV) and heart rate (HR); thus, changes in either the SV or HR cause a change in the CO.
- SV is dependent upon contractility, preload, and afterload.

Contractility (inotropism)
- Increases with sympathetic stimulation, increased intracellular calcium concentrations, decreased extracellular sodium concentrations, and administration of digitalis.
- Decreases with parasympathetic stimulation, heart failure, acidosis, hypoxia, and hypercapnia.

Preload
- Preload is the ventricular end-diastolic volume and is related to the right atrial pressure.
- Increases with increased venous return caused by exercise, blood transfusion, and sympathetic stimulation
- Venous dilators (eg, nitroglycerin) work by decreasing the preload.

Afterload
- Afterload is the diastolic arterial pressure and is proportional to the peripheral resistance.
- LV afterload corresponds to the aortic pressure and RV afterload corresponds with pulmonary artery pressure.
- Vasodilators (eg, hydralazine) work by decreasing the afterload.

Starling Curve
- The Starling curve relates the preload (or ventricular end-diastolic) volume with the CO (or SV).
- It shows that the force of contraction is proportional to the initial length of cardiac muscle fiber.
- An increase in preload will cause a corresponding increase in CO.
A 14-year-old boy with Down syndrome presents to your clinic with gradual onset of shortness of breath over the last several months. Physical examination reveals a systolic ejection murmur, a widely fixed split S2 sound and an oxygen saturation level of 93% on room air. As you schedule the boy for several cardiac tests, you worry that he may need surgery to correct his condition.
Atrial Septal Defect and Ventricular Septal Defect

| **Etiology** | **Atrial septal defect (ASD):** Congenital abnormality; associated with trisomies and rubella syndrome
Ventricular septal defect (VSD): Most common congenital cardiac anomaly; caused by failure of fusion of the interventricular septum with the aortic septum; associated with fetal alcohol syndrome and Down syndrome; may also result as complication from MI |
|--|---|
| **Pathology and Pathophysiology** | **ASD:** Defect in atrial septum allowing communication between right and left atria; several variants including *septum secundum* (90%) resulting from defective fossa ovalis, *septum primum* (5%) associated with Down syndrome, and *septum venosus* (5%)
VSD: Defect in ventricular septum allowing communication between right and left ventricles; several variants including *membranous VSD* (90%), infundibular VSD, and muscular VSD
Pathophysiology for both ASD and VSD: **Left-to-right shunt** results from lower pulmonary vasculature resistance as compared to systemic vasculature resistance |
| **Clinical Manifestations** | **ASD:** Often presents in adult life; **wide fixed split S2;** systolic ejection murmur
VSD: If large, may cause **holosystolic murmur** at left lower sternal border and RVH
Complications of ASD and VSD include pulmonary hypertension, **late cyanosis,** and paradoxical embolism |
| **Treatment** | Small VSDs may close spontaneously; surgery for large ASDs and VSDs |
| **Notes** | **Eisenmenger syndrome** refers to cyanosis occurring in adulthood owing to a shunt shift from left-to-right to right-to-left. It is caused by uncorrected VSDs, ASDs, and PDAs. |
A 6-month-old boy is brought to the emergency room by his mother, who notes that he appears to be having trouble breathing. Upon speaking with the mother, you discover that she suffered from rubella during her pregnancy and that the child has not been seen by a doctor since birth. On physical examination, a continuous “machine-like” murmur is heard and you note signs of pulmonary congestion. You make a preliminary diagnosis and schedule the patient for an echocardiogram.
Patent Ductus Arteriosus (PDA)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Congenital anomaly caused by failure of closure of fetal ductus arteriosus; associated with congenital rubella; increased risk in patients at high altitudes (fetal oxygen deprivation)</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Vasculature:** Persistence of communication between pulmonary arteries and aorta after birth (normally closes within 24 hours of birth)
Pathophysiology: **Left-to-right shunt** results from lower pulmonary vasculature resistance as compared to systemic vasculature resistance |
| **Clinical Manifestations** | Presents with **continuous “machine-like” murmur**
Complications include RV hypertrophy and heart failure |
| **Treatment** | **Indomethacin closes PDA;** misoprostol (PGE) keeps PDA open |
| **Notes** | **Eisenmenger syndrome** refers to cyanosis occurring in adulthood owing to a shunt shift from left-to-right to right-to-left. It is caused by uncorrected VSDs, ASDs, and PDAs. |
A 20-year-old man presents to your clinic complaining of progressive dyspnea. His lung examination is normal, but you note that he has significantly weak femoral pulses bilaterally and a blood pressure of 160/110 in both arms. When a chest x-ray reveals notching of the ribs, you refer the patient to a cardiologist for further evaluation.
Coarctation of Aorta

| **Etiology and Epidemiology** | Etiology unknown; associated with **Turner syndrome** (infantile type)
| | Occurs more frequently in **men** |
| **Pathology** | **Infantile type:** Narrowing of aorta proximal to ductus arteriosus
| | **Adult type:** Narrowing of aorta distal to ductus arteriosus
| | Both types may be accompanied by bicuspid aortic valve, aortic stenosis, ASD, VSD, berry aneurysm, or mitral regurgitation |
| **Clinical Manifestations** | **Adult type:** Noncyanotic disease; weak femoral pulse; hypertension in upper extremities versus lower extremities; **left ventricular hypertrophy**; holosystolic murmur. **Lab findings:** Notching of ribs on x-ray resulting from collateral circulation
	Infantile type: Heart failure
Treatment	Surgical resection
Notes	
A newborn boy, born to a diabetic mother, is found to be blue. Physical examination reveals a holosystolic murmur, consistent with the presence of a large ventricular septal defect. A chest x-ray demonstrates a boot-shaped heart. As you schedule several cardiac tests for the baby, you suspect that the child will most certainly need surgery to correct the myriad of defects associated with his condition.
Tetralogy of Fallot

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by anterosuperior displacement of infundibular septum resulting in unequal division of aorta and pulmonary artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Tetralogy includes pulmonary stenosis, RV hypertrophy, VSD, and aorta overriding VSD</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Results in right-to-left shunt leading to early cyanosis at birth, hypercapnia, and restlessness</td>
</tr>
<tr>
<td>Imaging: X-ray shows boot-shaped heart</td>
<td></td>
</tr>
<tr>
<td>Treatment and Prognosis</td>
<td>Surgery to close VSD and relieve pulmonary stenosis</td>
</tr>
<tr>
<td>Clinical prognosis is dependent on the severity of pulmonary stenosis</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Transposition of great vessels also presents with early cyanosis and is associated with offspring of diabetic mothers. It is caused by failure of aorticopulmonary septum to spiral, resulting in aorta arising from RV and pulmonary trunk arising from LV. The disorder is fatal unless associated with VSD, ASD, or PDA. Treatment is immediate surgery.</td>
</tr>
</tbody>
</table>
During a routine physical examination, a 60-year-old man mentions to you that he occasionally experiences chest discomfort that radiates to his left shoulder. He describes that discomfort as a “weight on his chest” and notes that the pain tends to come on after he shovels his driveway and dissipates with rest. He denies any chest pain at rest. You schedule him for an exercise stress test, write him a prescription for nitroglycerin, and warn him against performing any strenuous exercise until further consultation with a cardiologist.
Angina Pectoris

| **Etiology** | Stable angina: Caused by atherosclerosis
| | Prinzmetal (variant) angina: Associated with coronary artery vasospasm
| | Unstable (crescendo) angina: Caused by disruption of atherosclerotic plaque with partial thrombosis in coronary artery |

| **Pathophysiology** | All types of angina are caused by transient ischemia resulting in inadequate myocardial oxygenation |

| **Clinical Manifestations** | Stable: Precordial chest discomfort associated with **exertion**; pain is relieved by rest and nitroglycerin; nonspecific ST-T changes on ECG
| | Prinzmetal: Episodic chest pain occurring at rest; may see ST elevation on ECG
| | Unstable: Progressively frequent chest pain initially occurring with activity but later occurring at rest; considered indication for acute MI in near future; may see ST depressions on ECG |

| **Treatment** | Stable: Nitrates; β-blockers; statins; aspirin
| | Prinzmetal: Vasodilators (nitrates, calcium channel blockers)
| | Unstable: β-blockers; statins; aspirin; coronary evaluation with catheterization in near future; consider heparin treatment |

| **Notes** | Angina pectoris may be clinically silent in diabetics. |
A 60-year-old man presents to the emergency department complaining of 2 hours of crushing substernal chest pain that radiates to his left shoulder and jaw. He appears fatigued and is breathing heavily and sweating profusely. You order an ECG, which demonstrates ST elevations across the precordium. You immediately activate the cardiac catheterization laboratory in the hopes of minimizing tissue damage caused by his condition. You worry that this patient may be at significant risk for ventricular rupture in 5–7 days.
Myocardial Infarction

| **Etiology** | Caused by vasospasm, embolus, or **atherosclerotic thrombus resulting in coronary artery occlusion**
Risk factors include increasing age, hypertension, smoking, diabetes, male gender, postmenopausal women, and hyperlipidemia |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Heart: Progression from wavy fibers with edema and hemorrhage (4-12 hours) to coagulative necrosis with muscle hypereosinophilia and neutrophilic infiltration (12-36 hours) to macrophage infiltration with phagocytosis of dead cells and formation of granulation tissue (5-10 days) to scar formation (10 days to 2 months)</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Crushing, substernal **chest pain with radiation to jaw and left arm;** dyspnea; nausea; diaphoresis.
Complications include **cardiac arrhythmia** (can cause sudden death within first few days), fibrinous pericarditis (within 3-5 days), pulmonary edema, CHF, shock, thromboembolism, **rupture of ventricular free wall or septum (VSD)** (within 7-10 days), rupture of papillary muscle leading to mitral regurgitation, and **Dressler syndrome** (autoimmune fibrinous pericarditis several weeks post-MI)
Lab findings: Diagnosis with **ST elevation (STEMI)** and permanent **Q wave** on ECG (within hours); **elevated cardiac troponin** (seen within 4 hours to 10 days); elevated CK-MB, LDH-1, and AST |
| **Treatment** | Thrombolytic therapy and/or coronary angioplasty for early MI |
| **Notes** | 52 |
A 23-year-old woman presents with dyspnea on exertion and orthopnea. She has no significant past medical history, although she does recall having had strep throat 10 years ago, which was not treated with antibiotics. On physical examination, you hear a late, low-frequency, rumbling, mid-diastolic murmur following a high-pitched opening snap heard best at the apex of the heart. You order an echocardiogram and refer her to a cardiologist for further treatment of her condition.
Mitral Stenosis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Usually caused by rheumatic heart disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Mitral valve: Fish-mouth appearance; fibrous thickening; calcification of leaflets; fusion of commissures; shortening of chordae tendineae</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Tends to present 10+ years after rheumatic fever with dyspnea on exertion, orthopnea, and paroxysmal nocturnal dyspnea. Other findings include delayed, low-frequency, rumbling, mid-diastolic murmur following a high-pitched opening snap after S2 best heard at apex, and left atrial dilation. Complications include atrial fibrillation, predisposition to subacute endocarditis, and right heart failure</td>
</tr>
<tr>
<td>Treatment</td>
<td>Valve replacement if severe; treatment of heart failure if needed</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

53
A 20-year-old woman presents to your clinic for her annual checkup. She is a new patient and on physical examination, you note that she has a holosystolic, high-pitched, blowing murmur with a mid-systolic click heard best at the apex with radiation to the axilla. You mention this finding to your patient and reassure her that it is a benign condition that affects at least 3% of adults in the United States.
Mitral Regurgitation

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Causes include rheumatic heart disease, mitral valve prolapse, infective endocarditis, papillary muscle damage after MI, and LV dilatation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Pathophysiology: Results from distortion of normal alignment of mitral valve and/or papillary muscles</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Holosystolic high-pitched blowing murmur best heard at apex with radiation to axilla; S3 may be present. Acute cases may present with pulmonary edema while chronic cases may present with fatigue and weakness on exertion. Complications include pulmonary hypertension and RV failure.</td>
</tr>
<tr>
<td>Treatment</td>
<td>Endocarditis prophylaxis; mitral valve replacement</td>
</tr>
<tr>
<td>Notes</td>
<td>Mitral valve prolapse is the most common heart valve murmur presenting in young women as a late systolic murmur with midsystolic click. On pathology, there is an enlarged mitral leaflet that balloons into the left atrium during systole. There is also annular dilation, thinned chordae tendineae, and fibrous thickening of valve leaflets. It is usually benign, but it may be associated with connective tissue diseases (eg, Marfan syndrome).</td>
</tr>
</tbody>
</table>
A 70-year-old man presents to your office for a new patient visit. He has not seen a doctor in 25 years. On review of systems, he reports progressive dyspnea with exertion and he admits that he has passed out on occasion. On physical examination, a coarse, late-peaking crescendo-decrescendo, systolic ejection murmur heard best at the base of the heart is detected. You also note that his carotid pulses are quite weak. You make a preliminary diagnosis based on your physical examination and order an echocardiogram to confirm your suspicions.
Aortic Stenosis

| **Etiology** | Causes include senile/degenerative **calcific aortic stenosis** (occurs in patients > 60 years old), **congenital bicuspid valve**, and rheumatic heart disease |
| **Pathology and Pathophysiology** | **Aortic valve:** Calcific deposits on aortic cusps (calcific aortic stenosis); fibrosis of cusps; commissural fusion (if associated with rheumatic heart disease)
Pathophysiology: Increased afterload from increased gradient across narrowed aortic valve leads to LV hypertrophy and decreased LV compliance. Eventually, LV failure occurs. Angina results from mismatch of myocardial oxygen supply (decreased compliance leads to compression of intramyocardial vessels) and demand (increased oxygen need from increased LV wall stress). |
| **Clinical Manifestations** | Presents with **angina**, **syncope**, and **CHF**; patients have coarse, late-peaking **crescendo-decrescendo systolic ejection murmur** following ejection click which radiates to the apex and the neck; **pulsus parvus et tardus** (peripheral pulses are weak and delayed compared to heart sounds); carotid bruit; S4 often present; may see left ventricular hypertrophy |
| **Treatment** | Control of hypertension; primary prevention of coronary artery disease with statins; valve replacement if severe |

Notes
A 25-year-old man presents with increasing shortness of breath and dyspnea on exertion. He is very tall with long, wiry limbs and hyperextensible joints. On physical examination, there is marked pulsatile blushing of his nail beds. You also hear an immediate, high-pitched, blowing, diastolic, decrescendo murmur over the left sternal border while the patient is leaning forward. You order an echocardiogram to determine whether the patient is a candidate for valve replacement.
Aortic Regurgitation

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Causes include rheumatic heart disease, infective endocarditis, dilation of ascending aorta associated with hypertension and increasing age, nondissecting aortic aneurysm, Marfan syndrome, syphilitic aortitis, ankylosing spondylitis, and prosthetic aortic valve replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Insufficient valve results in volume overload of LV leading to simultaneous LV hypertrophy and dilatation. Volume overload also results in increased stroke volume, leading to hyperdynamic pulses and widened pulse pressure.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Presents with dyspnea on exertion, shortness of breath, and forceful heart beat. Patient has immediate high-pitched, blowing, diastolic, decrescendo murmur heard best at left sternal border with patient leaning forward; presence of S3; wide pulse pressure; hyperdynamic pulses often associated with pulsatile blushing of nail beds; LV hypertrophy and dilatation. Complications include severe LV failure</td>
</tr>
<tr>
<td>Treatment</td>
<td>Control of hypertension; treatment of heart failure if present with diuretics; eventual valve and aortic root replacement</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
A 10-year-old girl presents to the clinic with fever, malaise, migratory polyarthritis, and a blanching erythematous ring-shaped rash over her proximal extremities. On further questioning, you find out that she suffered from a severe sore throat 2 to 3 weeks ago. Serum studies demonstrate an ESR of 100 and a positive anti–streptolysin O titer. You worry that she may suffer from valvular heart disease during her adult years as a result of her current condition.
Acute Rheumatic Fever and Rheumatic Heart Disease

| **Etiology** | **Acute rheumatic fever (ARF):** Antibodies formed against group A β-hemolytic streptococci cross-react against patient’s tissues; usually presents in children 5-15 years of age
Rheumatic heart disease (RHD): Late sequelae of acute rheumatic fever; presents 20+ years after ARF |
|---|---|
| **Pathology** | **ARF:** Presence of Aschoff bodies (inflammatory foci surrounded by lymphocytes) and Anitschkow cells (macrophages which may become multinucleated) producing a pancarditis in heart tissue; serofibrinous pericardial exudate
RHD: Mitral stenosis with fish-mouth deformity; may also affect aortic valve |
| **Clinical Manifestations** | **ARF:** Onset of symptoms 2-3 weeks after streptococcal pharyngitis; major Jones criteria include carditis, migratory polyarthritis, chorea, erythema marginatum (blanching, ring-shaped rash), and subcutaneous nodules; minor Jones criteria include fever, arthralgia, or evidence of previous streptococcal infection (positive anti-streptolysin O [ASO] titer). Lab findings: Elevated ESR.
RHD: Presents with valvular heart disease (usually mitral stenosis, but may have aortic stenosis as well); valvular disease may lead to hypertrophy of heart, arrhythmias, and heart failure |
| **Treatment** | Penicillin for streptococcal infection; salicylates for fever and arthritis; endocarditis prophylaxis if indicated |

Notes
57
A 30-year-old man presents to the emergency room with sudden high fever and shaking chills. A new murmur localized to the mitral valve is heard. The patient has bilateral nail-bed hemorrhages, painful nodules on the tips of his fingers and toes, an erythematous rash on his palms and soles, and white spots surrounded by hemorrhage in his retina. You immediately begin the patient on broad spectrum antibiotics and order blood cultures and an echocardiogram to confirm the diagnosis.
Acute and Subacute Endocarditis

| Etiology | **Acute:** Often caused by *Staphylococcus aureus*
Subacute: Often caused by *viridians streptococci* (e.g., *S. mutans*); often occurs after dental procedures |
|----------|--|
| Pathology | **Acute:** Large vegetations consisting of fibrin, inflammatory cells, and bacteria on previously normal valves
Subacute: Small vegetations consisting of fibrin, chronic inflammatory cells, and fibrosis on abnormal valves |
| Clinical Manifestations | **Acute:** Sudden high fever with chills; new onset of murmur
Subacute: Insidious onset with low-grade fever
Both types can present with Osler nodes (painful nodules on digit pads), Janeway lesions (red rash on palms and soles), Roth spots (white spots on retina with surrounding hemorrhage), nail-bed splinter hemorrhages, and bacteremia
Complications include chordae tendineae rupture, perforation of valvular leaflet, heart failure, suppurative pericarditis, and septic emboli |
| Treatment | **Acute:** Broad spectrum antibiotics; may need surgical treatment if severe
Subacute: Broad spectrum antibiotics; prophylaxis of SBE with antibiotics in susceptible individuals before dental procedures |
| Notes | **Tricuspid valve endocarditis** is associated with IV drug use.
Nonbacterial endocarditis is associated with sterile emboli and seen with cancer metastasis or renal failure (marantic endocarditis), SLE (Libman-Sacks endocarditis, which demonstrates vegetation on both sides of valve), DIC, or carcinoid syndrome. |
A 20-year-old man from Panama presents to your clinic complaining of dyspnea, orthopnea, bilateral leg swelling, and a bloated belly. He denies any history of a congenital heart disease, rheumatic fever, or valvular disease. As you prepare to admit him to the hospital for further testing and treatment, you wonder if a parasitic disease may be causing his condition.
Myocarditis

Etiology and Epidemiology

Usually caused by viruses (ie, Coxsackievirus A, **Coxsackievirus B**), or *Trypanosoma cruzi* (Chagas disease); other causes include fungi (eg, *Candida*), helminthes (eg, trichinosis), parasites (eg, toxoplasmosis), bacteria (eg, Lyme disease), postviral syndrome, SLE, drug hypersensitivity, hyper/hypothyroidism, and sarcoidosis

Seen most commonly in young men

Pathology

Gross: Hemorrhages visible on ventricular myocardium

Microscopic: Diffuse myocardial degeneration and necrosis with **mononuclear inflammatory infiltrate**

Clinical Manifestations

May be asymptomatic or may present as **biventricular heart failure**, fever, dyspnea, fatigue, new onset of systolic murmur, palpitations, or **pleuropericardial pain**

Complications include arrhythmias or sudden death

Treatment

Usually supportive

Notes
A 20-year-old college football player suddenly collapses and dies during a practice session. His father had suffered a similar fate in his early 30s. On autopsy, he is found to have a hypertrophied heart with an enlarged intraventricular septum. On histologic examination of the myocardium, you see disoriented, tangled, hypertrophied myocardial fibers and you suspect that his death was related to an autosomal dominant condition resulting in a mutation of beta-myosin heavy chain protein gene.
Cardiomyopathy

Etiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated</td>
<td>Most common cardiomyopathy (90%); causes include alcoholism, chronic ischemia, wet beriberi (vitamin B₁ deficiency), postmyocarditis, cocaine abuse, doxorubicin toxicity, peripartum cardiomyopathy, and muscular dystrophies</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>Idiopathic or resulting from autosomal dominant mutation in β-myosin heavy chain gene</td>
</tr>
<tr>
<td>Restrictive</td>
<td>Can be idiopathic or caused by sarcoidosis, amyloidosis, Löeffler endomyocardial fibrosis, systemic sclerosis, and endocardial fibroelastosis</td>
</tr>
</tbody>
</table>

Pathology and Pathophysiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated</td>
<td>Dilation of all chambers; hypertrophy of muscle cells; interstitial fibrosis; results in systolic dysfunction</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>Hypertrophy of interventricular septum and myocardium; banana-shaped LV lumen; haphazard arrangement of hypertrophied myocytes; results in LV outflow tract obstruction and impaired diastolic filling leading to decreased CO</td>
</tr>
<tr>
<td>Restrictive</td>
<td>Bi-atrial dilation; diffuse interstitial fibrosis; results in decreased ventricular compliance with decreased diastolic filling and decreased CO</td>
</tr>
</tbody>
</table>

Clinical Manifestations

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated</td>
<td>Signs of CHF. Imaging: CXR demonstrates balloon heart</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>Dyspnea; angina; syncope with exertion; palpitations; sudden death</td>
</tr>
<tr>
<td>Restrictive</td>
<td>Dyspnea; exercise intolerance; weakness; edema</td>
</tr>
</tbody>
</table>

Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated</td>
<td>ACE inhibitors; anticoagulants; diuretics; transplant</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>β-blockers; refrain from strenuous exercise</td>
</tr>
<tr>
<td>Restrictive</td>
<td>Treatment of underlying cause</td>
</tr>
</tbody>
</table>

Notes

60
A 35-year-old woman presents with acute chest pain and a nonproductive cough. Review of systems reveals a history of malar rash, fatigue, and migratory polyarthritis. On physical examination, she is found to have a friction rub and distant heart sounds and she complains of increased pain when supine. An increased jugular venous pressure is noted with inspiration and diffuse ST elevations are seen on most ECG leads. You initiate therapy with corticosteroids and refer her to a rheumatologist and a cardiologist.
Pericarditis

Etiology

Acute: Can be **serous** (caused by SLE, RA, scleroderma, renal failure, viral infection, or tumors), **fibrinous** (caused by renal failure, MI, ARF, radiation, or postsurgical trauma), **hemorrhagic** (caused by TB or malignancy), or **suppurative** (caused by bacteria such as TB, *Staphylococcus*, or *Pneumococcus*).

Constrictive: Previous history of acute pericarditis

Pathology and Pathophysiology

Acute: (1) **Serous**: protein-rich exudate in pericardial space with inflammatory reaction on tissue surfaces; (2) **Fibrinous**: fibrin-rich exudate in pericardial space, which may resolve or organize into scar; (3) **Suppurative**: purulent exudate with massive inflammatory reaction on tissue surfaces, which usually organizes into scar; (4) **Hemorrhagic**: fibrin-rich exudate with associated hemorrhage in pericardial space.

Constrictive: Heart encased by fibrous scar with **loss of pericardial space**, resulting in reduced cardiac contraction and venous return.

Clinical Manifestations

Acute: **Chest pain** worsening with inspiration and supine position; **friction rub**; pulsus paradoxus; distant heart sounds; fever; nonproductive cough; Kussmaul sign (increased JVP with inspiration).

Lab findings: **Diffuse ST elevations** in most ECG leads and normal CK-MB.

Constrictive: Quiet heart sounds; Kussmaul sign; S3; may mimic right-sided heart failure.

Treatment

Acute: Treat any underlying causes if known; NSAIDs; corticosteroids if necessary.

Constrictive: Pericardiectomy.

Notes
A 75-year-old woman with a history of metastatic breast cancer presents to the emergency department complaining of weakness and difficulty breathing. On physical examination, her blood pressure is 90/50 and her heart sounds are distant and faint. You also note that she has an increased JVP. When an ECG reveals a QRS complex height that varies from one heart beat to the next, you prepare for an immediate pericardiocentesis.
Cardiac Tamponade

Etiology
Can be caused by hemopericardium (accumulation of blood in pericardial sac) resulting from traumatic perforation of heart or aorta, cardiac rupture resulting from acute MI, or aortic dissection. May also result from accumulation of inflammatory effusions in pericardial space as caused by malignancy, connective tissue disorders, or infections.

Pathophysiology
Compression of heart leads to restriction of cardiac filling and equilibration of pressure in heart chambers, resulting in decreased CO.

Clinical Manifestations
- Presents with **Beck Triad** (hypotension, distant heart sounds, increased venous pressure);
- pulsus paradoxus; cyanosis; Kussmaul sign (increased JVP with inspiration);
- can be fatal if not promptly treated

Lab findings: Electrical alternans on ECG (beat-to-beat alterations of QRS complex height), enlarged cardiac silhouette on CXR.

Treatment
Immediate pericardiocentesis

Notes
A 55-year-old woman presents to your clinic complaining of ankle swelling and increasing shortness of breath with exertion. Upon directed questioning, she reveals that she also experiences shortness of breath when she is lying down. Physical examination reveals marked hepatosplenomegaly, distended neck veins, and pedal edema. A chest x-ray is suggestive of cardiomegaly. You start the patient on an ACE inhibitor, diuretic, and a low-sodium diet and you refer her to a cardiologist.
Congestive Heart Failure

Etiology

Left-sided (LS): Ischemic heart disease (especially MI); hypertension; aortic/mitral valve disease; cardiomyopathies; myocarditis
Right-sided (RS): Left-sided heart failure; mitral stenosis; cor pulmonale; cardiomyopathies; myocarditis; tricuspid/pulmonary valve disease

Pathology and Pathophysiology

LS: Hypertrophied and dilated LV; dilated LA; pulmonary congestion with presence of hemosiderin-laden macrophages or “heart failure” cells
RS: Hypertrophied and dilated RV; usually hypertrophied and dilated LV; hepatic congestion (nutmeg liver) with centrilobular necrosis; congested spleen

Pathophysiology for both left- and right-sided failure: LV failure leads to decreased cardiac output, resulting in dyspnea. Pulmonary edema results from LV failure to keep up with RV output, leading to increased fluid transudation from pulmonary vessels. RV failure leads to increased central venous pressure, causing hepatomegaly and peripheral edema.

Clinical Manifestations

LS: Dyspnea; orthopnea; paroxysmal nocturnal dyspnea; pleural effusion; cerebral anoxia; salt and water retention
RS: Fluid retention and peripheral edema; hepatosplenomegaly; ascites; distention of neck veins

Treatment

Diuretics; low-sodium diet; ACE inhibitors; nitrates; beta-blockers; digoxin

Notes

Cor pulmonale refers to isolated right-sided heart failure caused by chronic pulmonary hypertension.
A 40-year-old woman presents to the emergency room complaining of dyspnea on exertion and fainting spells. Physical examination is significant for a low-grade fever and a regurgitant murmur localized in the left atrium near the mitral valve. Two-dimensional echocardiography shows a tumor near the mitral valve that moves with the cardiac cycle. You schedule surgery to excise the lesion.
Cardiac Neoplasms (Atrial Myxoma and Rhabdomyoma)

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Myxomas: Etiology unknown although 10% of cases are caused by autosomal dominant trait; seen in adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rhabdomyomas: Associated with tuberous sclerosis; seen in infants and young children</td>
</tr>
<tr>
<td>Pathology</td>
<td>Myxoma: Usually found in LA near the fossa ovalis; often in pedunculated form; composed of globular myxoma cells and smooth muscle cells in a mucopolysaccharide ground substance</td>
</tr>
<tr>
<td></td>
<td>Rhabdomyoma: Grayish myocardial mass that protrudes into ventricle; composed of spider cells (polygonal cells with glycogen-laden vacuoles separated by cytoplasmic strands)</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Myxoma: Presents when mitral valve function is compromised by ball-valve obstruction causing dyspnea or syncope, when a stroke occurs because of an embolus, or when a regurgitant valvular murmur is found on physical examination; systemic manifestations includes fever, wasting, arthralgias, malaise, and anemia</td>
</tr>
<tr>
<td></td>
<td>Rhabdomyoma: Presents with symptoms of obstruction of cardiac chamber</td>
</tr>
<tr>
<td>Treatment</td>
<td>Myxomas are usually benign and can be surgically excised.</td>
</tr>
<tr>
<td>Notes</td>
<td>Metastasis is the most common cause of cardiac tumor. Cardiac sarcomas are rare, but when they occur, they are malignant tumors that often metastasize.</td>
</tr>
</tbody>
</table>
Disorders of the Respiratory System

Vascular Disorders
- Pulmonary Embolism
- Pulmonary Hypertension

Obstructive Pulmonary Disorders
- Cystic Fibrosis
- Chronic Bronchitis
- Emphysema
- Asthma
- Bronchiectasis

Restrictive Pulmonary Diseases
- Sarcoidosis
- Asbestosis
- Pneumoconioses
 - Adult and Neonatal Respiratory Distress Syndrome
 - Goodpasture Syndrome

Pulmonary Infections
- Tuberculosis
- Bacterial Pneumonia
- Interstitial Pneumonia

Other Disorders
- Bronchogenic Carcinoma
- Pneumothorax
- Obstructive Sleep Apnea
Respiratory System

LUNG VOLUMES AND CAPACITIES

<table>
<thead>
<tr>
<th>Lung Volume/Capacity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Volume (TV)</td>
<td>Air expired or inspired after a single, normal breath</td>
</tr>
<tr>
<td>Inspiratory reserve volume (IRV)</td>
<td>Air that can be inspired above the tidal volume</td>
</tr>
<tr>
<td>Expiratory reserve volume (ERV)</td>
<td>Air that can be expired after expiration of the tidal volume</td>
</tr>
<tr>
<td>Residual volume (RV)</td>
<td>Air remaining in lungs after maximal expiration</td>
</tr>
<tr>
<td>Forced expiratory volume at 1 second (FEV₁)</td>
<td>Air expelled in the first second of forced expiration</td>
</tr>
<tr>
<td>Vital capacity (VC)</td>
<td>TV + IRV + ERV</td>
</tr>
<tr>
<td>Inspiratory capacity (IC)</td>
<td>TV + IRV</td>
</tr>
<tr>
<td>Functional reserve capacity (FRC)</td>
<td>RV + ERV</td>
</tr>
<tr>
<td>Total lung capacity (TLC)</td>
<td>TV + IRV + ERV + RV</td>
</tr>
</tbody>
</table>

PULMONARY FUNCTION TEST: SPIROMETRY

- Measures lung volumes and capacities; cannot measure RV or any capacity that includes RV (FRC or TLC)
 → Ratio of FEV₁/FVC is used to assess pulmonary function. In obstructive disease, FEV₁ and FVC are both decreased, but FEV₁ is decreased more, so FEV₁/FVC is decreased. In restrictive disease, both FEV₁ and FVC are decreased to a similar extent so FEV₁/FVC is either normal or increased.
A 63-year-old man presents to your office complaining of worsening shortness of breath over the past year. You know that this patient has smoked two packs of cigarettes a day for the past 45 years. As you are talking to the patient, you notice that he is using his accessory muscles of respiration to breathe, that his chest is barrel shaped and that he is breathing carefully through pursed lips. Using a spirometer, you determine that he has a decreased FEV₁/FVC ratio and an increased TLC. You tell the patient that it is imperative that he stop smoking and prescribe him a tiotropium inhaler.
Emphysema

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Associated with smoking and hereditary α_1-antitrypsin deficiency</th>
</tr>
</thead>
</table>

Pathology and Pathophysiology

Pathophysiology: Enzymes (elastase) destroy elastin in alveolar wall, unless neutralized by α_1-antitrypsin; smoking inactivates α_1-antitrypsin and attracts neutrophils (source of elastase).

Gross: Enlargement of air spaces; destruction of alveolar wall; 4 patterns seen:

1. **Centriacinar**—respiratory bronchioles dilated especially in upper lobes, seen in smokers;
2. **Panacinar**—entire acinus is dilated in entire lung, seen with α_1-antitrypsin deficiency;
3. **Paraseptal**—distal alveoli dilated near pleura and interlobar septa, may see large blebs;
4. **Irregular**—acinus is irregularly involved, associated with scarring and inflammation.

Clinical Manifestations

“Pink puffers” (slowing of forced expiration through pursed lips); **dyspnea**; cyanosis; tachycardia; **barrel-shaped chest**; use of accessory respiratory muscles.

Complications include pneumothorax caused by bullae rupture, chronic bronchitis; and **cor pulmonale**.

Imaging: Hyperinflation and bullae with flattened diaphragm on CXR.

Lab findings: Hypoxia, **increased residual volume** and TLC, **decreased FEV$_1$/FVC ratio**

Treatment

Smoking cessation; oxygen; bronchodilators (anticholinergics, beta-agonist); inhaled steroids.

Notes

Emphysema is a chronic obstructive pulmonary disease (COPD).

Hereditary α_1-antitrypsin deficiency also causes hepatic cirrhosis.
An 8-year-old girl is brought into an urgent-care clinic complaining of shortness of breath. Her past medical history is significant for multiple allergies. Upon physical examination, you hear expiratory wheezes and you observe that the patient is using her accessory muscles of respiration. You decide to administer an inhaled β₂-adrenergic agonist for relief of her symptoms.
Asthma

| **Etiology** | Extrinsic: Associated with **type I hypersensitivity reaction**; seen in **children**
| | Intrinsic: Associated with chronic bronchitis, exercise, or cold; seen in **adults** |
| **Pathology and Pathophysiology** | *Pathophysiology:* Hypersensitivity of bronchial airways results in symptomatic bronchospasm
| | *Lung:* **Hypertrophy of bronchial smooth muscle; hyperplasia of bronchial submucosal glands; mucous plugs** containing Curshmann spirals and Charcot-Leyden crystals |
| **Clinical Manifestations** | **Dyspnea; expiratory wheezing;** cough; use of accessory muscles of respiration; pulsus paradoxus
| | Complications include status asthmaticus (prolonged asthma attack)
| | *Lab findings:* Hypoxia, **decreased FEV₁/FVC ratio,** eosinophilia in children |
| **Treatment** | **Inhaled β₂-adrenergic agonists** (albuterol) for quick relief; inhaled or systemic corticosteroids, leukotriene modifiers (zileuton), cromolyn, or theophylline for long-term control |

Notes
A 44-year-old man presents to your office complaining of a persistent cough, which is productive of copious sputum. He admits that he is a heavy smoker and has suffered from similar coughs for several years. Physical examination reveals diffuse wheezing and crackles. You suspect that this patient will have a decreased FEV₁/FVC ratio and strongly suggest that he stop smoking.
Chronic Bronchitis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Chronic irritation caused by smoking, air pollution, or infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Lung: Hyperplasia of submucosal glands* leading to increased mucus secretion; increase in goblet cells</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Productive cough for at least 3 months over 2+ years; “blue bloaters” (refers to cyanosis); dyspnea; wheezing</td>
</tr>
<tr>
<td></td>
<td>Complications include cor pulmonale</td>
</tr>
<tr>
<td></td>
<td>Lab findings: Increased residual volume and TLC, decreased FEV₁/FVC ratio, Reid index > 50% (refers to increased mucous gland size)</td>
</tr>
<tr>
<td>Treatment</td>
<td>Smoking cessation; oxygen; bronchodilators (anticholinergics, beta-agonist); inhaled steroids</td>
</tr>
<tr>
<td>Notes</td>
<td>Chronic bronchitis is a chronic obstructive pulmonary disease (COPD).</td>
</tr>
</tbody>
</table>
A 25-year-old man presents to the emergency department with hemoptysis associated with a chronic productive cough. He reports suffering from chronic sinusitis and has had several bouts of severe pneumonia that have required hospitalization in the past. Pulmonary function tests reveal a decreased FEV₁/FVC ratio. When CT scan reveals dilated bronchioles with signet-ring appearance, you decide to check for situs inversus because his present condition may be associated with a rare genetic disorder.
Bronchiectasis

Etiology
Caused by bronchial **obstruction** (tumor, foreign body, mucus), chronic necrotizing **infections of bronchi**, or **cystic fibrosis**

Pathology
Lung: Dilated airways usually in **lower lobes**; inflammation within bronchial walls; fibrosis of bronchial walls in chronic disease

Clinical Manifestations
- Chronic **cough** with copious **purulent sputum; hemoptysis; cyanosis; anemia**
- Complications include lung and brain abscesses or cor pulmonale
- **Imaging:** Dilated bronchioles with signet-ring appearance on CT scan
- **Lab findings:** Decreased **FEV₁/FVC** ratio, decreased Hct

Treatment
Antibiotics; bronchodilators; surgical resection for localized disease

Notes
Kartagener syndrome is caused by a defect in dynein, leading to immotile cilia. Clinical manifestations include bronchiectasis, sterility, recurrent sinusitis, and situs inversus (dextrocardia).
A 2-year-old girl is brought to the emergency department because of shortness of breath and a productive cough. Upon questioning her parents, you discover that this patient has a history of pulmonary infections and bulky stools that float. Physical examination reveals a thin girl with a barrel-shaped chest, crackles over both lungs, and digital clubbing. Later, a sweat test demonstrates high levels of chloride ions. You realize that this girl will have a severely shortened life span owing to her condition.
Cystic Fibrosis

Etiology

Autosomal recessive disorder that is caused by a mutation (most common is ΔF508) on chromosome 7. This mutation results in a defective membrane Cl\(^-\) channel (CFTR), causing defective chloride and water transport in epithelial cells.

Pathology and Pathophysiology

Pathophysiology: Mutated Cl\(^-\) channel leads to secretion of thick mucus, which lodges in lungs, liver, and pancreas

- **Lung:** Mucus plugs obstructing bronchioles; hyperplasia and hypertrophy of goblet cells
- **Liver:** Mucus plugs obstructing bile canaliculi; biliary cirrhosis
- **Pancreas:** Mucus plugs obstructing pancreatic ducts; fibrosis of exocrine glands

Clinical Manifestations

Chronic lung disease causing productive cough, pulmonary infections, bronchiectasis, cyanosis, and barrel-shaped chest; pancreatic insufficiency causing steatorrhea, diabetes, and malabsorption; meconium ileus (small bowel obstruction in newborn); infertility in men

Lab findings: High Cl\(^-\) concentrations in sweat test, hypoxia, increased ratio of residual volume to TLC

Treatment and Prognosis

Antibiotics; bronchodilators; techniques to clear airway secretions; lung transplantation

Median age of survival is 31. Death occurs from pulmonary complications.
A 63-year-old man is hospitalized for a severe case of lobar pneumonia with sepsis. Within the first 24 hours of his hospitalization, he develops worsening respiratory failure and requires intubation. A chest x-ray reveals bilateral patchy opacities. He becomes progressively hypoxemic even with increased oxygen delivery via the ventilator. You continue to treat the patient’s pneumonia, but you worry that he will have up to a 40% mortality rate given his current condition.
Adult and Neonatal Respiratory Distress Syndrome

| Etiology | Adult respiratory distress syndrome (ARDS): Lung infections; toxin inhalation; sepsis, trauma; pancreatitis; shock; DIC
Neonatal respiratory distress syndrome (NRDS): Predisposed by prematurity, maternal diabetes, and birth by C-section; caused by deficiency of pulmonary surfactant |
| --- | --- |
| Pathology and Pathophysiology | ARDS: Damage to alveolar capillary walls and alveolar walls by cytokines and endotoxin leads to increased vascular permeability and decreased surfactant, which leads to pulmonary edema and alveolar collapse. *Gross:* Heavy, red lung. *Microscopic:* Intra-alveolar edema and inflammation with hyaline membranes; if nonfatal, results in chronic scars.
NRDS: Surfactant deficiency results in increased surface tension in the lung, causing alveolar collapse. *Gross:* Heavy, purple lung; engorged pulmonary vessels. *Microscopic:* Eosinophilic hyaline membranes within alveoli. |
| Clinical Manifestations | ARDS: Dyspnea; tachypnea; cyanosis. *Imaging:* Diffuse bilateral infiltrates on CXR; mismatch on ventilation-perfusion scan. *Lab findings:* Hypoxia; $\text{P}_{\text{aO}_2}/\text{F}_{\text{IO}_2} < 200$.
NRDS: Dyspnea, tachypnea, and cyanosis soon after birth; if nonfatal, complications include bronchopulmonary dysplasia, PDA, intraventricular brain hemorrhage, and necrotizing enterocolitis |
| Treatment | ARDS: Treat underlying cause; positive-pressure mechanical ventilation
NRDS: Exogenous surfactant at birth to infants under 28 weeks; corticosteroids to mother before birth; oxygen therapy (carries risk of oxygen toxicity, damage caused by oxygen free radicals) |
| Notes | ARDS carries a 40% mortality rate. |
A 49-year-old man presents to your clinic complaining of mild shortness of breath over the past year. He does not smoke, although he has worked in a glass-manufacturing factory for over 20 years. A chest x-ray reveals eggshell calcification of the hilar lymph nodes. You make a diagnosis and suggest that he have a PPD placed because his condition is associated with increased susceptibility to tuberculosis.
Pneumoconiosis (Silicosis, Coal Worker, Anthracosis)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Inhalation of inorganic dust particles, including carbon dust (anthracosis), coal dust (coal worker), and silica dust (silicosis)</th>
</tr>
</thead>
</table>
| **Pathology** | **Coal worker pneumoconiosis:** *Simple:* Coal macules around bronchioles in upper lobes. *Complicated:* Progressive massive fibrosis; blackened fibrotic nodules with necrotic center in lung.

Silicosis: Silicotic nodules in lungs that may obstruct airways or blood vessels; nodules may become collagenous scar; honeycomb lung

Anthracosis: Irregular black patches (carbon-ingesting macrophages) along lung lymphatics |
| **Clinical Manifestations** | **Coal worker pneumoconiosis:** *Simple* is asymptomatic; *complicated* can result in bronchiectasis, pulmonary hypertension, or cor pulmonale. *Imaging:* Small opacities in upper lung seen on CXR.

Silicosis: Dyspnea; increased susceptibility to TB. *Imaging:* Nodularity in the upper lung and eggshell calcification of hilar lymph nodes seen on CXR.

Anthracosis: Asymptomatic

Lab findings: Decreased TLC for all forms |
| **Treatment** | Symptomatic relief; withdrawal of offending agent |
| **Notes** | |
A 59-year-old man presents to your office with a productive cough and dyspnea. He has smoked heavily for many years and works in construction. A CT scan reveals interstitial lung fibrosis and calcified pleural plaques. You inform him that his condition has placed him at great risk for both bronchogenic carcinoma and malignant mesothelioma of the pleura.
Asbestosis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Inhalation of asbestos fibers; aggravated by cigarette smoking</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology:* Alveolar macrophages engulf asbestos fibers, which cause a fibroblastic response.
Lung: Diffuse interstitial fibrosis; asbestos bodies (yellow-brown ferruginous bodies in lungs reflect asbestos fibers coated with hemosiderin); collagenous plaques on pleura and diaphragm |
| **Clinical Manifestations** | Dyspnea; productive cough
Imaging: Interstitial fibrosis and pleural plaques on CT, mainly affects lower lobes
Lab findings: Decreased TLC |
| **Treatment** | No effective treatment |
| **Notes** | Patients with asbestosis are at increased risk of developing bronchogenic carcinoma and **malignant mesothelioma of the pleura.** On histology, malignant mesothelioma presents as dense sheet of white tumor that has both a fibrous and glandular epithelial component and encases the lung. |
A 26-year-old man presents to the emergency room after coughing up blood. He also reports progressive fatigue, occasional headaches, and bouts of tea-colored urine. Physical examination reveals a blood pressure of 160/100, bilateral pulmonary crackles, and lower extremity edema. When his urinalysis demonstrates hematuria, you begin to suspect that he may be suffering from an autoimmune disorder and you order a serum study looking specifically for antiglomerular basement membrane antibodies, which will confirm your suspected diagnosis.
Goodpasture Syndrome

Etiology and Epidemiology
Caused by antibodies against the glomerular basement membrane (GBM) (type II hypersensitivity reaction)

Most commonly seen in **men** between the ages of 20 and 30

Pathology

Lung: Intra-alveolar hemorrhages; fibrosis thickening of the septa; hemosiderin-laden macrophages in alveoli

Kidney: Rapidly progressive crescentic glomerulonephritis (macrophages, proliferating parietal cells and fibrin coalesce to form crescents in Bowman space, which eventually destroy Bowman space and compress the glomerular capillaries)

Immunofluorescence studies: Linear deposits of immunoglobulins along alveolar and glomerular basement membranes

Clinical Manifestations

Hemoptysis; nephritic syndrome (edema, hypertension, hematuria)

Lab findings: Antiglomerular basement membrane antibodies, iron deficiency anemia

Treatment

Plasma exchange and corticosteroids

Notes

Anti-GBM glomerulonephritis is characterized by nephritic syndrome mediated by anti-GBM antibody deposition in the kidney without involvement of the lung.
A 32-year-old African American woman presents to the urgent-care clinic complaining of fever, rash, and dyspnea. Upon questioning her further, you discover that she has been suffering from arthralgias in both of her knees and her right hip. Physical examination is notable for a red, nodular rash on all of her extremities. A chest x-ray reveals interstitial lung infiltrates and massive bilateral hilar lymphadenopathy. Serum studies reveal an increased ESR, increased ACE activity, and hypercalcemia. You suspect that you will see noncaseating granulomas on a biopsy of her hilar lymph nodes.
Sarcoidosis

| **Etiology and Epidemiology** | Cause unknown, although immune dysfunction has been postulated
Highest incidence in African American women between the ages of 20 and 40 |
|-------------------------------|--|
| **Pathology** | Involved tissues most commonly include lung, lymph nodes, spleen, liver, bone marrow, skin, eyes, and salivary glands
Microscopic: **Noncaseating granuloma** with fibrotic center surrounded by epithelioid cells and Langhans giant cells; asteroid bodies (inclusions within giant cells) and Schaumann bodies (calcium concretions) are also present, although they can be present in other granulomatous diseases as well |
| **Clinical Manifestations** | Malaise; fever; hepatosplenomegaly; dyspnea; **interstitial lung disease; erythema nodosum**; polyarthritis; uveitis; CNS and peripheral neuropathy
Imaging: **Bilateral hilar lymphadenopathy** and **interstitial lung infiltrates** on CXR
Lab findings: Decreased TLC, increased ESR, **increased ACE activity, hypercalcemia** and hypercalciuria, hypergammaglobulinemia, reduced sensitivity to skin test antigens |
| **Treatment** | Corticosteroids |
| **Notes** | |
An 82-year-old woman presents to the emergency department complaining of severe shortness of breath. She tells you that her right calf has been sore as well. On directed history, you discover that she suffered a stroke 6 months ago and has been bedridden ever since. Further evaluation reveals that she is hypoxic and has elevated D-dimer levels. You decide to begin empiric anticoagulant therapy and you order a ventilation-perfusion scan on this patient.
Pulmonary Embolism

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Emboli can be air, amniotic fluid, fat, foreign bodies, or tumor cells. The most common emboli (95%) are thromboemboli, which usually originate from deep vein thrombosis in the leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Gross: Hemorrhage or infarct of the lung (usually of the lower lobes); infarct only occurs in patients with inadequate circulation due to lung or heart disease; may see venous thrombus (dark red with pale gray fibrin strands and firm) lodged in pulmonary vessel</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Tachycardia; dyspnea; pain on inspiration; may have symptoms of DVT (sore, swollen calf); may have syncope or hypotension if massive PE</td>
</tr>
</tbody>
</table>

Imaging: **Mismatch seen on ventilation-perfusion scan,** filling defect seen on high resolution CT scan of the chest

Lab findings: Hypoxia, **elevated D-dimer levels** *(seen with thromboembolus)*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Anticoagulation; consider thrombolysis if patient is hypotensive or if signs of right heart strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Pulmonary embolism is the third leading cause of death among hospitalized patients. Virchow triad (venous stasis, hypercoagulable state, vessel wall injury) predisposes to deep vein thrombosis and thus to pulmonary embolism.</td>
</tr>
</tbody>
</table>
A 35-year-old woman presents to the clinic complaining of a several month history of progressive shortness of breath with exertion. She has no history of respiratory illnesses. Physical examination reveals an oxygen saturation level of 92% on room air, a systolic ejection click, and narrow splitting of the S2 heart sound. An electrocardiogram demonstrates signs of right ventricular hypertrophy. You order an echocardiogram to further evaluate the pressures in her pulmonary vasculature, but you begin to worry that this patient may have a very poor prognosis.
Pulmonary Hypertension

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Idiopathic; connective tissue disorders (SLE, CREST); congenital heart disease with left-to-right shunts; left heart failure; interstitial lung diseases (COPD, OSA, sarcoidosis); pulmonary embolism</th>
</tr>
</thead>
</table>
| Pathology | **Lung:** Medial hypertrophy and intimal fibrosis of the pulmonary arterioles
 Heart: **Right ventricular hypertrophy**; right ventricular dilatation (seen with acute cor pulmonale) |
| Clinical Manifestations | Dyspnea, fatigue, and chest pain; systolic ejection click; narrow splitting of S2
 Complications include cyanosis, **thrombosis**, right ventricular hypertrophy, and **cor pulmonale** (right-sided heart failure secondary to pulmonary hypertension) |
| Treatment | Oxygen; diuretics for right heart failure; anticoagulation; phosphodiesterase inhibitors |
| Notes |

77
A 68-year-old man presents to the emergency department complaining of a fever, dyspnea, and a cough productive of green sputum. Physical examination reveals an ill-appearing man, breathing heavily. On lung examination, you note bronchial breath sounds and dullness to percussion over the right lower lung lobe. A chest x-ray demonstrates circumscribed opacity over the region of his right lower lung lobe. You obtain sputum and blood cultures and then admit this patient to the hospital for antibiotic treatment.
Bacterial Pneumonia

| Etiology | Lobar pneumonia: *Pneumococcus* accounts for 90%-95% of cases
| | Bronchopneumonia: *Staphylococcus aureus, Haemophilus influenzae, Klebsiella, Streptococcus pyogenes* |

| Pathology | Lobar: Generally intra-alveolar exudate leading to consolidation; 4 stages: (1) congestion: heavy red lung, intra-alveolar fluid; (2) red hepatization: RBCs, fibrin and neutrophils within alveoli; (3) gray hepatization: fibrin and neutrophils within alveoli; (4) resolution: intra-alveolar exudate is reabsorbed
| | Bronchopneumonia: Often is bilateral and multilobar; neutrophil exudate extends from bronchi and bronchioles into adjacent alveoli |

| Clinical Manifestations | Malaise, fever, dyspnea, and productive cough. Bronchial breath sounds and rales on auscultation and dullness to percussion over affected lung areas.
| | Complications include abscess, empyema, or sepsis
| | Imaging: CXR shows radio-opaque lobe for lobar pneumonia or patchy opacities for bronchopneumonia |

| Treatment | Antibiotics; respiratory support |

| Notes | Hospital-acquired pneumonias may be caused by gram-negative microorganisms (*Klebsiella, Escherichia coli, Pseudomonas*) as well as gram-positive organisms (*S aureus*) and can be fatal. |
A 21-year-old woman presents to the university health clinic complaining of general weakness and a low-grade fever of 3 days’ duration. Upon directed history, you learn that she has had an occasional cough and dyspnea and that her two roommates have been suffering from similar symptoms. When a chest x-ray reveals patchy infiltrates, you prescribe her a course of azithromycin and schedule her for a follow-up visit to make sure that her symptoms have resolved.
Interstitial Pneumonia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Mycoplasma pneumoniae; viruses (influenza, RSV, adenovirus); Chlamydia psittaci; Coxiella burnetii; Legionella pneumophila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Lung: Often multilobar; patchy infiltration of mononuclear inflammatory exudate into alveolar walls; may see pink hyaline membranes lining alveoli</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Malaise; **fever**; muscle aches; occasional cough (clinical picture appears less severe than bacterial pneumonias)
Imaging: CXR reveals **patchy infiltration**
Lab findings: Leukocytosis, elevated cold agglutinin levels in *M pneumoniae* infection |
| **Treatment** | Antibiotics; supportive care |
| **Notes** | *Pneumocystis carinii pneumonia* (PCP) is the most common opportunistic infection seen in AIDS patients. It demonstrates an interstitial pattern of lung pathology and can be diagnosed by silver stain of a bronchial lavage. |
A 42-year-old HIV-positive man presents to the emergency department with hemoptysis. He states that he has lost 15 pounds over the last 2 months and has had an intermittent fever, cough, and chills. He has not been taking any of his HIV medications and his CD4 count is 130. A chest x-ray reveals a lesion in his apical right lung. He is able to cough up green mucous coated with blood. You send the sample off for staining and culture. The sample reveals acid-fast bacilli and you decide to admit this patient to an isolation room and begin him on a multidrug treatment regimen while drug susceptibility tests are run.
Tuberculosis (TB)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Inhalation of droplets containing Mycobacterium tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology and Pathophysiology</td>
<td>Pathophysiology: TB bacilli are phagocytosed by alveolar macrophages, inducing a T-cell-mediated immune response. Macrophages and T cells kill most of bacilli, but a few residual bacilli lay dormant in the Ghon complex (primary TB). Upon reinfection or immunosuppression, these organisms become activated (secondary TB). TB may spread via lymphatics or blood and result in miliary TB (seeding of distal organs) or other extrapulmonary TB manifestations (include meningitis and Pott disease of the spine).</td>
</tr>
<tr>
<td>Primary TB: Ghon complex</td>
<td>(lesion in upper part of lower lobe that becomes calcified); enlarged caseous hilar lymph nodes</td>
</tr>
<tr>
<td>Secondary TB:</td>
<td>Tubercle formation (cavitary lesion) in lung apex or hilar lymph nodes; caseating granuloma made of epithelioid cells, fibroblasts, and giant cells</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Primary TB is asymptomatic, but secondary TB produces constitutive symptoms (fatigue, weight loss, fever, and productive cough with hemoptysis)</td>
</tr>
<tr>
<td></td>
<td>Lab findings: Positive PPD test, calcified Ghon complex on CXR, acid-fast bacilli in sputum and confirmed by culture</td>
</tr>
<tr>
<td>Treatment</td>
<td>4-drug TB regimen: INH, rifampin, pyrazinamide, ethambutol/streptomycin; add 2 more drugs at a time for drug-resistant strains</td>
</tr>
<tr>
<td>Notes</td>
<td>PPD test: Represents delayed hypersensitivity after primary TB infection</td>
</tr>
</tbody>
</table>
A 63-year-old man presents to your office after noticing that his left eyelid is droopy. Upon further questioning, he admits to some shortness of breath over the past 2 months, but attributes that to his 40-year-long heavy smoking habit. Physical examination reveals ptosis and miosis of the left eye and extremely dry skin of the left face. A chest x-ray demonstrates an irregular mass in the apex of his left lung. You admit the patient to the hospital for a biopsy of the mass, but you fear that the prognosis is not good.
Bronchogenic Carcinoma (Part 1)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Cigarette smoking (especially linked with squamous cell and small cell carcinoma); air pollution; ionizing radiation; asbestos; nickel; chromium exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Squamous cell: Central location; hilar mass with cavitation; keratinization of squamous cells</td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma: Peripheral location; includes two forms: (1) Bronchial derived: develops on scar site, glandular elements with mucin cells; (2) Bronchioloalveolar: multiple mucinous nodules (which appear on CXR), tall columnar epithelial cells, which line the alveolar walls</td>
</tr>
<tr>
<td></td>
<td>Small cell: Central location; small, round, basophilic cells with little cytoplasm (oat cell is a neoplasm of neuroendocrine Kulchitsky cells)</td>
</tr>
<tr>
<td></td>
<td>Large cell: Peripheral location; large polygonal undifferentiated cells (pleomorphic giant cells with leukocyte fragments in cytoplasm)</td>
</tr>
<tr>
<td></td>
<td>Metastases of all types often occur to adrenals, brain, liver, bone</td>
</tr>
<tr>
<td>Notes</td>
<td>Metastases of other cancers to the lung are more common than primary lung cancer and may spread to lung hematogenously, via lymphatics or through contiguous growth. Carcinoid tumor can also occur in the lung.</td>
</tr>
</tbody>
</table>
A 71-year-old man presents to your office because of water retention. He states that he keeps himself well-hydrated, but he does not feel that his intake matches his output. Pertinent past medical history includes shortness of breath and weight loss of 15 pounds over the past 3 months. He has smoked 2 1/2 packs of cigarettes per day for 50 years. Besides looking into possible causes of urinary obstruction and other diagnoses, you decide to send the man for a chest x-ray, which reveals a central coin lesion. Based on the patient’s history, you expect to see small, round cells with scant cytoplasm on a biopsy of the mass.
Bronchogenic Carcinoma (Part 2)

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th>Hemoptysis; chest pain; dyspnea; cough; weight loss; pleural effusion (usually bloody); hoarseness (from recurrent laryngeal nerve paralysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancoast tumor:</td>
<td>apical lung tumor resulting in Horner syndrome (ptosis, miosis, anhidrosis) owing to tumor involvement of cervical sympathetic plexus</td>
</tr>
<tr>
<td>Superior vena cava syndrome:</td>
<td>facial swelling and dilation of veins of head and upper limbs from tumor compression of SVC</td>
</tr>
<tr>
<td>Cushing syndrome</td>
<td>(caused by ACTH-like protein production), SIADH (caused by ADH-like protein production), and Lambert-Eaton syndrome (myasthenia gravis-like illness resulting from defect in acetylcholine release) are all seen in small cell carcinoma</td>
</tr>
<tr>
<td>Imaging:</td>
<td>CXR demonstrates pneumonic coin lesion</td>
</tr>
<tr>
<td>Lab findings:</td>
<td>Hypercalcemia (caused by PTH-like protein production) seen in squamous cell carcinoma</td>
</tr>
</tbody>
</table>

| Treatment and Prognosis | Surgery, radiation, and chemotherapy for nonsmall cell lung carcinoma; radiation and chemotherapy for small cell carcinoma
 | Overall 5-year survival rate is 10%–15% |

Notes
A 22-year-old man presents to the emergency department complaining of severe chest pain and shortness of breath. Physical examination reveals a tall, thin man with decreased breath sounds, decreased tactile fremitus, and hyperresonance to percussion over the right chest. His ECG appears normal, but a supine chest x-ray reveals a deep sulcus sign over the right costophrenic angle. You immediately place him on oxygen and prepare him for chest tube placement.
Pneumothorax

| **Etiology and Epidemiology** | Primary spontaneous: Rupture of subpleural bleb; penetrating or blunt trauma
Secondary spontaneous: Complication of prior lung disease (PCP, TB, CF, COPD)
Tension: Positive pressure mechanical ventilation; lung infection
Spontaneous pneumothorax is most common in **young, tall, thin men** who smoke. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Compression and collapse of the lung resulting from air in the pleural space</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | **Chest pain; dyspnea; hypoxia; diminished breath sounds;** decreased tactile fremitus; **lung hyperresonance to percussion** on side of pneumothorax
Imaging: **Tracheal deviation away** from side of pneumothorax, visceral pleural line on upright CXR, **deep sulcus sign** (abnormally radiolucent costophrenic sulcus) on supine CXR |
| **Treatment** | Drainage of pleural air with chest tube or aspiration needle; surgical resection of blebs to prevent future recurrence if appropriate |
| **Notes** | Besides air, the pleural space can also become filled with serous fluid (**hydrothorax**), blood (**hemothorax**), inflammatory exudate (**empyema**), or lymphatic fluid (**chylothorax**). These fluids may need to be drained and the instigating factors treated to relieve respiratory distress. |
A 63-year-old overweight male presents to your clinic because his wife has noticed that he stops breathing for up to 15 seconds at a time during the night. She is concerned and hopes that something can be done. On further questioning, he admits to often feeling sleepy during the day. You suggest that the patient start a weight loss program and that he consider using a CPAP machine to treat his condition.
Obstructive Sleep Apnea

| **Etiology and Epidemiology** | Risk factors include obesity, hypothyroidism, cigarette smoking, and hypertension
Most commonly affects **middle-aged men** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Loss of normal pharyngeal muscle tone allows pharynx to collapse during inspiration with resulting upper airway obstruction during sleep</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | **Daytime sleepiness** and cognitive impairment; thrashing movements during sleep
Complications include pulmonary hypertension with right heart failure and cardiac arrhythmias
Lab findings: **Apneic events** on sleep study (**polysomnogram**), erythrocytosis |
| **Treatment** | Weight loss; continuous positive airway pressure (**CPAP**); surgery to resect pharyngeal soft tissue (uvulopalatopharyngoplasty) |
| **Notes** | Breathing is interrupted by **lack of effort** in **central sleep apnea**. |
Disorders of the Gastrointestinal Tract

- Disorders of the Esophagus
 - Tracheoesophageal Fistula
 - Barrett Esophagus
 - Achalasia
 - Gastroesophageal Reflux Disease
 - Esophageal Carcinoma

- Disorders of the Stomach
 - Congenital Pyloric Stenosis
 - Acute and Chronic Gastritis
 - Peptic Ulcer Disease
 - Gastric Carcinoma

- Disorders of the Small Intestine
 - Crohn Disease
 - Meckel Diverticulum
 - Celiac Sprue
 - Carcinoid Syndrome

- Disorders of the Colon
 - Hirschsprung Disease
 - Diverticulosis and Diverticulitis
 - Ulcerative Colitis
 - Adenomatous Polyps of the Colon
 - Multiple Polyposis Syndromes
 - Colorectal Adenocarcinoma

- Disorders of the Appendix
 - Acute Appendicitis
Gastrointestinal Tract

DIGESTION AND ABSORPTION

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Digestion</th>
<th>Absorption in Small Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>(\alpha)-Amylase in saliva; (\alpha)-amylase from pancreas; oligosaccharide hydrolases at brush border of small intestine</td>
<td>(\text{Na}^+)-dependent cotransport of glucose, galactose in duodenum, proximal jejunum; facilitated diffusion of fructose</td>
</tr>
<tr>
<td>Proteins</td>
<td>Trypsin; chymotrypsin; carboxypeptidases; elastase</td>
<td>(\text{Na}^+)-dependent cotransport of amino acids, dipeptides, tripeptides</td>
</tr>
<tr>
<td>Lipids</td>
<td>Lingual lipase in saliva; mechanical breakdown in stomach; CCK slows gastric emptying; pancreatic lipases (lipase, phospholipase A, colipase)</td>
<td>Micelle formation in lumen; diffusion of fatty acids, monoglycerides, cholesterol into cell</td>
</tr>
</tbody>
</table>
Disorders of the Liver, Gallbladder, and Exocrine Pancreas

Disorders of the Exocrine Pancreas
- Acute and Chronic Pancreatitis
- Pancreatic Carcinoma

Jaundice
- Differential Diagnosis of Jaundice
- Congenital Hyperbilirubinemas
- Viral Hepatitis

Cirrhotic Disease
- Autoimmune Hepatitis
- Hepatic Cirrhosis
- Alcoholic Liver Disease
- Biliary Cirrhosis
- Hemochromatosis
- Wilson Disease

Vascular Disorders
- Portal Hypertension
- Budd-Chiari Syndrome

Neoplasms
- Hepatocellular Carcinoma

Disorders of the Liver

Disorders of the Gallbladder
- Cholecystitis
- Cholelithiasis
- Tumors of the Gallbladder and Extrahepatic Biliary Ducts
LABORATORY TESTS OF THE LIVER AND PANCREAS

Aspartate and Alanine Aminotransferase (AST, ALT)
- Elevated levels result from hepatocellular necrosis or inflammation.
- ALT is more specific to the liver than AST.
- An AST/ALT > 2/1 is typical of alcoholic hepatocellular damage.

Alkaline Phosphatase
- Elevated levels suggest cholestasis or infiltrative liver disease (eg, tumor or abscess).
- Can be elevated in diseases of the liver, bone, intestine, or placenta.

Gamma-Glutamyl Transpeptidase (GGT) or 5′-Nucleotidase (5′-NT)
- Elevated levels concomitant with elevated alkaline phosphatase suggest a hepatic origin of disease.

Amylase and Lipase
- Released into the serum with pancreatic damage.
- Lipase is the more specific enzyme marker for pancreatitis.
You are called emergently to see a newborn baby boy in the nursery. The mother reports that the baby started choking and coughing up breast milk upon her first attempt to feed him. On physical examination, the baby is excessively salivating and appears slightly blue in color. You order laboratory studies, expecting to find severe fluid and electrolyte imbalances, and you order a chest x-ray to look for signs of a gastric air bubble. You also call a pediatric surgical consult as you suspect that the child will need immediate surgical repair of his condition.
Tracheoesophageal Fistula

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Congenital abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Multiple variants; the most common variant (90%) is lower esophagus communicating with trachea near tracheal bifurcation, resulting in the upper esophageal end becoming a blind pouch</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Presents with newborn choking, coughing, and vomiting with each attempt to feed; excessive salivation; cyanosis and pulmonary symptoms; aspiration and paroxysmal suffocation and severe fluid and electrolyte imbalances may occur</td>
</tr>
<tr>
<td></td>
<td>Imaging: CXR shows presence of gastric air bubble</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgical repair</td>
</tr>
<tr>
<td>Notes</td>
<td>Tracheoesophageal fistula can be associated with other abnormalities, including maternal polyhydramnios (excessive amniotic fluid), congenital heart disease, and GI malformations.</td>
</tr>
</tbody>
</table>
A 45-year-old male patient with a 3-year history of gastroesophageal reflux presents to a gastroenterologist with the chief complaint of increasing heartburn and regurgitation after meals. He has been taking antacids and proton pump inhibitors daily for the last year with reasonable relief of symptoms before the recent increase in heartburn and regurgitation even with antacid use. You, as the gastroenterologist, perform an endoscopy and find orange, gastric-type epithelium extending upward from the stomach into the distal esophagus in a circumferential fashion. You take a biopsy and send it to the laboratory for histologic studies, but you fear that this man is now at an increased risk for developing esophageal adenocarcinoma.
Barrett Esophagus

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Complication of chronic gastroesophageal reflux</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Orange, gastric-type epithelium extending upward from the stomach into distal tubular esophagus in a tonguelike or circumferential fashion on endoscopy
Microscopic: Squamous epithelium of esophagus is replaced by **metaplastic columnar epithelium** with mucosal glands containing goblets cells. Columnar cells may display signs of dysplasia (enlarged, hyperchromatic nuclei). |
| **Clinical Manifestations** | Symptoms are a consequence of gastroesophageal reflux; history of **heartburn** (retrosternal burning), regurgitation, and belching after meals; dysphagia is common
Complications include ulcerations, stricture formation, and **increased risk** (30- to 40-fold) of **esophageal adenocarcinoma** |
| **Treatment** | Long-term proton pump inhibitors or H₂-receptor antagonists and antacids |
| **Notes** | |
A 55-year-old Caucasian man presents to your gastroenterology clinic. He reports that he has had difficulty keeping down both solids and liquids over the last several months. After obtaining a more detailed history, you find that the patient has regurgitated small amounts of undigested food after almost every meal for the last 3 weeks. He also complains of substernal pain even hours after eating small meals. A barium esophagography reveals a characteristic “bird-beak” at the lower esophageal sphincter. The patient asks what can be done to stop the pain and you answer that botulinum toxin can be injected directly into the affected esophageal site with relief that can last for months.
Achalasia

| **Etiology and Epidemiology** | Idiopathic motility disorder
Steady increase of incidence with age |
|-------------------------------|-------------------------------------|

| **Pathology and Pathophysiology** | *Gross:* Dilation of esophagus above LES
Microscopic: Absence of ganglionic cells of myenteric plexus in esophageal wall
Pathophysiology: Loss of myenteric plexus results in loss of peristalsis in distal two thirds (smooth muscle) of the esophagus and **impaired relaxation of the LES** |
|----------------------------------|---|

| **Clinical Manifestations** | Gradual, progressive difficulty swallowing both solids and liquids; regurgitation of undigested food; substernal pain and fullness after eating
Complications include an increased risk of **squamous cell carcinoma** of the esophagus
Imaging: **Barium esophageal swallow** shows dilated esophagus with distal stenosis ("bird-beak" or rat-tailed LES) |
|-------------------------------|---|

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Botulinum toxin injection (for pain); pneumatic dilation of LES; surgical myotomy</th>
</tr>
</thead>
</table>

| **Notes** | Esophageal dysfunction is also seen in Chagas disease, esophageal tumors, systemic sclerosis, and esophageal spasm. |
A 42-year-old African American man presents to the clinic complaining of heartburn 30 minutes after eating many meals. His pain is worst when he lies down after eating. He has been treating himself with baking soda with good results, but he is wondering if some pill could be prescribed instead. On further questioning, the patient denies any regurgitation or dysphagia. You prescribe omeprazole (a proton pump inhibitor) in lieu of the baking soda and suggest that he does not recline for at least 3 hours after eating a large meal.
Gastroesophageal Reflux Disease

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Associated with hiatal hernia, alcohol, tobacco, obesity, pregnancy, and scleroderma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Gastric acid reflexes into esophagus because of incompetent LES (decreased muscular tone); untreated GERD can lead to Barrett esophagus</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Characterized by heartburn, which worsens after meals, when lying down, and when bending; symptoms usually reduced by antacids</td>
</tr>
<tr>
<td>Treatment</td>
<td>H$_2$-receptor antagonists; proton pump inhibitors; antacids</td>
</tr>
</tbody>
</table>

Notes
A 56-year-old man presents to the clinic with decreased ability to swallow solid foods even with extensive chewing. After taking a complete history, you learn that he has been avoiding large meals and has lost nearly 30 pounds over the last 6 months. He has smoked two packs of cigarettes a day for 20 years and has a history of heavy alcohol use as well. He complains of pain in his throat when swallowing and has been coughing up small amounts of blood on occasion. On physical examination, you notice both cervical lymphadenopathy and hepatomegaly, as well as a hoarse voice when the patient responds to your questions. You order an endoscopy with biopsy to establish your suspected diagnosis.
Esophageal Carcinoma

Etiology and Epidemiology
Risk factors include Barrett esophagus, achalasia, smoking, corrosive esophagitis, diverticula, esophageal webs, alcohol use, and genetic predisposition.

Occurs most frequently in men between the ages of 50 and 70.

Pathology

Squamous cell carcinoma: *Gross:* arises in upper and middle thirds of esophagus; may be polypoid lesion or diffuse infiltrating lesion or necrotic ulceration. *Microscopic:* tumor cell clusters composed of dysplastic squamous epithelium with keratin pearls.

Adenocarcinoma: *Gross:* arises in lower third of esophagus, usually from Barrett esophagus; appears as raised patch that may become a nodular mass with ulceration. *Microscopic:* glandular formation with mucin-producing cells.

Clinical Manifestations
Progressive solid food *dysphagia;* weight loss; anorexia; hoarseness; pain; hematemesis. Coughing or pneumonia may be a presenting sign owing to formation of tracheoesophageal fistula.

Most patients present with advanced, incurable disease.

Treatment and Prognosis
Palliative care; surgical resection; chemotherapy; radiation therapy.

Overall 5-year survival is < 15%.

Notes
Squamous cell carcinoma accounts for 90% of esophageal cancers across the world, but in the United States, there is roughly equal incidence of squamous cell carcinoma and adenocarcinoma of the esophagus.
A mother brings her 2-week-old baby girl into your clinic. She reports that her child was feeding normally at first, but recently has developed projectile vomiting after feeds. After taking a more detailed history, you learn that the child has also not passed stool for the last 4 days. On physical examination, you notice an olive-like epigastric mass. You call for a surgical consult, as you suspect that the child will need a myotomy.
Congenital Pyloric Stenosis

| **Etiology and Epidemiology** | Congenital abnormality with a multifactorial pattern of inheritance; often associated with Turner syndrome or polyhydramnios
Tends to affect men more often than women |
| **Pathology** | *Pylorus*: Hypertrophy and hyperplasia of muscularis propria |
| **Clinical Manifestations** | **Projectile vomiting** beginning at 2 weeks of age
Palpable olive-like **mass** in epigastric region |
| **Treatment** | Surgical incision of hypertrophied muscle (**myotomy**) |
| **Notes** | **Diaphragmatic hernia** is the incomplete development of the diaphragm resulting in abdominal contents herniating through the diaphragm malformation and compressing developing lung buds, thereby causing pulmonary hypoplasia. Clinical manifestations include breathlessness, cyanosis, and unusually flat abdomen in a newborn. This condition can be repaired surgically. |
A 66-year-old woman presents to the emergency room complaining of several bouts of bloody vomit. Further history reveals that she has also been suffering from some epigastric pain. Past medical history is significant for osteoarthritis, for which she has been taking high-dose Motrin daily. You admit her for endoscopic evaluation and you suspect that she will need to consider alternative therapy for her osteoarthritis.
Acute and Chronic Gastritis

Etiology

Acute: Drugs (eg, NSAIDs); alcohol; smoking; severe stress; systemic infections; uremia

Chronic: Type A is an autoimmune disorder while type B is caused by *Helicobacter pylori* infection

Pathology

Acute: *Gross:* subepithelial hemorrhages, petechiae, and punctate erosion. *Microscopic:* neutrophilic infiltration with purulent and hemorrhagic exudate.

Chronic: *Gross:* thickened and reddened rugal folds in fundus (type A) or antrum (type B); with long-standing disease, mucosa may become atrophic. *Microscopic:* lymphocytic infiltrate in lamina propria; lymphoid aggregates; presence of *H pylori* among microvilli (type B); hyperplasia of G cells (type A); presence of intestinal metaplasia or dysplastic cells.

Clinical Manifestations

Acute: Anorexia; epigastric pain; nausea; vomiting; hematemesis (coffee ground emesis)

Chronic: Type A: fatigue; indigestion and diarrhea; pallor; mild splenomegaly. *Lab findings:* autoantibodies to parietal cells; pernicious anemia; macrocytic anemia; B₁₂ deficiency; positive Schilling test. Type B: asymptomatic; associated with peptic ulcer. *Lab findings:* positive *H Pylori* serology or stool antigen.

Complications of both types include an increased risk of gastric carcinoma

Treatment

Acute: H₂-receptor antagonists or proton pump inhibitors

Chronic: Parenteral vitamin B₁₂ (type A); triple therapy (bismuth, metronidazole, tetracycline, or amoxicillin) (type B)

Notes
A 65-year-old man presents to the clinic complaining of epigastric pain after meals. After taking a more thorough history, you learn that he is a heavy smoker and that he has lost 10 pounds over the last 4 months because of a decreased appetite connected with the pain associated with meals. He denies any frank blood in his stools, but he has noticed that his stool has been darker recently. You schedule an upper endoscopy to evaluate the patient further, but in the meantime, you start him on a high-dose proton pump inhibitor.
Peptic Ulcer Disease

| Etiology and Epidemiology | Gastric (G): *H. pylori* infection (70%); NSAIDs; seen in older patients
Duodenal (D): *H. pylori* infection; seen in younger patients and in patients with blood group O
Development of peptic ulcer disease is also associated with chronic gastritis, smoking, Zollinger-Ellison syndrome, hyperparathyroidism, and MEN type I |
| Pathology and Pathophysiology | Gross: Mucosal defect with clean, punched-out margins occurring in antral and prepyloric regions (G) or in duodenum (usually the first part) (D)
Microscopic: Varies depending on stage of ulcer; active ulcers demonstrate necrotic fibrinoid debris with neutrophilic infiltrate and eventually granulation tissue; hypertrophy of Brunner glands (D)
Pathophysiology: G: arises because of decreased mucosal protection against gastric acid. D: arises because of increased gastric acid and pepsin secretion in combination with decreased mucosal protection. |
| Clinical Manifestations | Gastric: Epigastric pain greater with meals; weight loss. Lab findings: decreased H⁺ secretion, increased gastrin levels.
Duodenal: Epigastric pain decreases with meals; weight gain. Lab findings: increased H⁺ secretion
Complications include GI bleed, perforation, and obstruction. |
| Treatment | Proton pump inhibitors or H₂-receptor antagonists. Treat *H. pylori* infection with triple therapy (bismuth, metronidazole, and tetracycline or amoxicillin). |
| Notes | Peptic ulcer disease is not a precursor to gastric carcinoma. |
A 54-year-old Japanese American man presents to the clinic complaining of a gnawing epigastric pain. Upon taking a complete history, you learn that he has lost 20 pounds over the last 2 months and has been vomiting after meals. The pain has not been relieved by the use of over-the-counter antacids. On physical examination, you note supraclavicular lymph node swelling and darkened, thickened skin in the flexural areas of the patient’s legs and arms. You schedule the patient for an upper endoscopy with cytologic brushings and biopsies of any suspicious lesions as you fear that this patient may have a very serious condition.
Gastric Carcinoma

| Etiology and Epidemiology | Risk factors include **chronic gastritis**, dietary nitrosamines, and excessive sodium intake
More common in **men > 50 years** of age and in patients with blood group A |
|--------------------------|--|
| Pathology | **Intestinal type:** *Gross*: lesion with irregular necrotic base and **heaped-up margins**, usually located in the lesser curvature of the antrum or prepyloric region. *Microscopic*: glandular formation of mucin-producing cells.
Diffuse type: *Gross*: infiltrative process producing rigid stomach wall (**linitis plastica** or leather bottle stomach). *Microscopic*: clusters of gastric-type mucous cells (**signet-ring cells**) within gastric wall.
Can see early, aggressive, local metastasis to the lymph nodes and liver |
| Clinical Manifestations | Presents with anorexia, weight loss, vomiting, and gnawing epigastric pain not relieved by antacids
Lab findings: Hypochromic microcytic anemia |
| Treatment | Surgical resection |
| Notes | **Virchow node** is involvement of the left supraclavicular node by metastasis of stomach or other GI cancer.
Krukenberg tumor is bilateral metastasis of GI (usually stomach) cancer to ovaries. Histologically, the tumor has abundant mucus and signet-ring cells.
Acanthosis nigricans refers to hyperpigmentation and epidermal thickening of the flexural areas. It is suggestive of a visceral malignancy, including cancer of the stomach, lung, breast, or uterus. |
A 25-year-old man presents to the clinic complaining of intermittent bouts of diarrhea and RLQ pain not associated with meals. The patient reports that he has been constipated for several days. Your physical examination is significant for a temperature of 100°F, several oral aphthous ulcers, and a palpable RLQ mass. The patient also complains of migrating joint pains and a periodic burning sensation in his eyes with blurred vision, although his eye examination is normal. The perianal region is normal upon examination, but the guaiac test for occult blood is positive. You order an upper GI series with small bowel follow-through to look for evidence of ulcers, strictures, or fistulas as you suspect that this patient’s symptoms may be associated with a chronic disease.
Crohn Disease

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Idiopathic, although infectious causes have been suggested. Occurs most frequently in women between the ages of 15 and 30.</th>
</tr>
</thead>
</table>
| Pathology | *Gross:* Changes located to **terminal ileum**, small intestine, and colon; not found in rectum; **creeping fat** over bowel surface; thickened bowel wall leading to a **narrow lumen**; linear ulceration of the mucosa; **cobblestone mucosa** (submucosal edema with elevation of surviving mucosa).
Microscopic: **Transmural inflammation; skip lesions** (areas of normal bowel interspersed with diseased bowel); fissures; **noncaseating granulomas**; atrophy of crypts; mucosal metaplasia |
| Clinical Manifestations | Intermittent bouts of **low-grade fever, diarrhea (often with blood)**, and RLQ pain; may have RLQ mass on physical examination.
Extraintestinal manifestations: Oral aphthous ulcers; **erythema nodosum; migratory polyarthritis; uveitis; sacroiliitis; ankylosing spondylitis**
Complications: Fibrous **strictures** causing intestinal **obstruction** or perforation; **perianal fistulas**; and malabsorption syndrome
Imaging: **String sign** on x-ray after barium swallow (represents narrowed bowel lumen); evidence of ulceration, stricturing, or fistulas of the small intestine or colon on endoscopy |
| Treatment | Antidiarrheals; glucocorticoids; sulfasalazine; immunosuppressants |
| Notes | Crohn disease is considered an **inflammatory bowel disease** along with ulcerative colitis. |
A 1-year-old boy is brought to the emergency room by his concerned mother after she found bright red stool in his diapers. On physical examination, the child has a tender abdomen and you note a sausage-like mass in the right lower quadrant of the abdomen. You make a diagnosis of intussusception and treat the patient with an air enema. You suggest that the child undergo a lower GI series to determine if he has any bowel abnormality that may predispose him to developing intussusception.
Meckel Diverticulum

Etiology and Epidemiology

| Etiology and Epidemiology | Derived from remnant of **vitelline duct** (yolk stalk) | Occurs in 2% of population |

Pathology

- **Gross:** Blind pouch on antimesenteric border of ileum within 2 feet of the ileocecal valve causing tubular outpouching of small intestine
- **Microscopic:** True diverticulum with all 3 layers of the bowel wall (mucosa, submucosa, muscularis propria); may contain **acid-secreting gastric mucosa** and/or pancreatic tissue

Clinical Manifestations

- Presents in first 2 years of life. Usually asymptomatic, but can cause peptic ulcerations leading to a **GI bleed**, **intussusception** (invagination of a bowel segment into a more distal bowel segment), or **volvulus** (twisting of one bowel portion around its own mesentery). Intussusception presents with red currant jelly stools owing to bowel ischemia. Volvulus presents with acute abdominal pain, constipation, gas, and sigmoid distention.

Treatment

- Surgical excision

Notes

- Meckel diverticulum is the most common congenital abnormality of the GI tract.
A 23-year-old Irish immigrant presents to the clinic complaining of diarrhea that has been bothering him for 4 weeks. He tells you that he has bowel movements upward of 10 times a day. He describes his stools as soft, pale, large, floating, greasy, and foul smelling. On further questioning, he reveals that he also lost 7 pounds over the past month even though his appetite has been greater than usual. Physical examination reveals loss of muscle mass and marked pallor and the abdominal examination is significant for distention and hyperactive bowel sounds. Your suspicions are confirmed when serum studies reveal the presence of antigliadin antibodies.
Celiac Sprue

| **Etiology and Epidemiology** | Autoimmune-mediated intolerance to gluten (present in wheat, oat, rye, and barley)
More common in people of northern European descent; also associated with HLA-DR3 and HLA-DQw2 |
|-------------------------------|--|
| **Pathology** | *Gross:* Blunting and **atrophy of small intestinal mucosal villi**
Microscopic: **Increased lymphocytes** and plasma cells in the lamina propria; loss of brush border |
| **Clinical Manifestations** | May become symptomatic in **infancy** with growth retardation and **failure to thrive**, but may present in young adulthood. Also may see **steatorrhea** (pale, bulky, frothy, foul-smelling stool), abdominal distention, weight loss, or **dermatitis herpetiformis** (symmetric, recurrent, pruritic, subepidermal blisters usually occurring over extensor surfaces of the extremities or over the trunk, scalp, and neck); 10%–15% of patients will develop enteropathy-type T-cell lymphoma.
Lab findings: Abnormal D-xylose test, **antigliadin and antiendomysial and anti-TTG antibodies** |
| **Treatment** | Gluten-free diet; dapsone for dermatitis herpetiformis |
| **Notes** | **Tropical sprue** is a malabsorption syndrome caused by overgrowth of enterotoxigenic organisms found in the tropics and is treated with broad-spectrum antibiotics.
Whipple disease is caused by a rare multisystemic infection with PAS-positive actinomycete, *Tropheryma whippelii*. It presents with a malabsorption syndrome, arthralgias, and CNS, cardiac, and ocular involvement. |
A 40-year-old male patient presents to the clinic complaining of abdominal cramps and watery diarrhea. Upon taking a more complete history, you learn that he has had recurrent, watery diarrhea for nearly 2 months and has lost nearly 10 pounds during the same period. On physical examination, you find a red, flushed face, expiratory wheezes audible on both lower lung fields, and a right-sided murmur consistent with pulmonic regurgitation. You order a 24-hour urine collection looking for elevated levels of 5-HIAA and you explain to the patient that he will need a CT scan in an attempt to locate the anatomic source of his symptoms.
Carcinoid Syndrome

| **Etiology and Epidemiology** | Caused by serotonin release from certain carcinoid tumors
<table>
<thead>
<tr>
<th></th>
<th>Occurs in 1% of patients with carcinoid tumors</th>
</tr>
</thead>
</table>

Pathology and Pathophysiology

Carcinoid Tumor: *Gross*: yellowish-tan intramural or submucosal mass most commonly present in the appendix, but also present in GI tract, pancreas, respiratory tract, gallbladder, thymus, and reproductive organs. *Microscopic*: derived from **neuroendocrine cells** of the GI tract; tumor cells have pink granular cytoplasm with stippled nucleus.

Pathophysiology: Carcinoid syndrome is caused by **hepatic metastases** of carcinoid tumor. Carcinoid tumors of the bowel release serotonin into the portal circulation, where it is metabolized and removed. Hepatic metastases release serotonin into the hepatic vein and thus into systemic circulation, thereby leading to carcinoid syndrome.

Clinical Manifestations

Recurrent *watery diarrhea; facial flushing; asthma (bronchospasm); right-sided valvular disease* (pulmonic, tricuspid valves) leading to endocarditis and right-sided heart failure

Lab findings: Increased levels of **5-HIAA in the urine**

Treatment and Prognosis

Cyproheptadine (histamine-receptor antagonist) for diarrhea; octreotide acetate (somatostatin analog) reduces urinary 5-HIAA; surgery for localized carcinoid

Overall 5-year survival rate for carcinoid tumors is 90%

Notes

Carcinoid tumor is the most common tumor of the appendix.

Left-sided heart disease in carcinoid syndrome is seen in fen-phen diet pill users.
A 2-day-old baby boy with Down syndrome is examined in the neonatal ward because the child has failed to pass meconium. On examination, the child has abdominal distention consistent with an obstruction of the bowel. Realizing that the patient may experience a possible bowel perforation with resulting peritonitis if not treated immediately, you put the newborn on parenteral alimentation while you order a rectal biopsy in which you expect to see absence of ganglion cells in the muscle wall and submucosa of the rectal tissue.
Hirschsprung Disease

| **Etiology and Epidemiology** | Caused by **failure of neural crest cell migration during embryogenesis**
| | Occurs in 1 in 5000 births; affects boys more than girls; associated with Down syndrome |

| **Pathology** | *Gross:* **Dilation of colon** proximal to aganglionic segment (**megacolon**); involvement of **rectum**
| | *Microscopic:* Absence of ganglion cells of Auerbach and Meissner plexuses |

| **Clinical Manifestations** | Presents as **failure to pass meconium** or chronic constipation with abdominal bloating early in life; may also present as acute enterocolitis with watery, foul-smelling stool, or perforation of colon |

| **Treatment** | Surgery and anastomosis |

| **Notes** | |
A 65-year-old man presents to the clinic complaining of a mild aching abdominal pain in the left lower quadrant. Upon taking a more detailed history, you learn that he has been constipated, while passing loose stools every other day for the past 2 weeks. He has vomited 3 times over the same period of time. On physical examination, he has a low-grade fever, a palpable left lower quadrant mass with tenderness, and a positive stool guaiac test. Plain abdominal films find no evidence of free abdominal air. You decide to start the patient on an antibiotic regimen to treat his current symptoms and you inform the patient that a high-fiber diet will be necessary to treat his underlying disease.
Diverticular Disease (Diverticulosis and Diverticulitis)

Etiology and Epidemiology

Diverticulosis: Development of diverticula is associated with increased pressure in the bowel and bowel wall weakness; commonly seen in people > 60 years; associated with low-fiber diet

Diverticulitis: Caused by inflammation of diverticula, usually by impacted fecal material

Pathology

Diverticula: *Gross*: blind pouches leading off the alimentary tract that communicate with gut lumen; most commonly false (pulsion) diverticula resulting from herniation of mucosa through defects in muscular layer; less commonly true (traction) diverticula consisting of mucosa, muscularis, and serosa. *Microscopic*: atrophic mucosa with thin muscularis propria.

Diverticulosis: Presence of multiple diverticula most commonly in the sigmoid colon

Diverticulitis: Inflammation of diverticula with inflammatory infiltrate with edema

Clinical Manifestations

Diverticulosis: Usually asymptomatic, but can present with vague abdominal discomfort and frank blood in the stool with no leukocytes or epithelial cells

Diverticulitis: Presents with fever, a chronic colicky LLQ abdominal pain, and possibly bright red blood in the stool; complications include perforation, abscess formation, peritonitis, and bowel stenosis

Treatment

Diverticulosis: High-fiber diet; psyllium fiber laxatives

Diverticulitis: Antibiotics; high-fiber diet; consider colonic resection if multiple episodes of diverticulitis occur

Notes

101
A 32-year-old woman presents to the clinic complaining of blood-tinged diarrhea. She reports that she had 4 episodes of loose stool per day with intermittent rectal bleeding for the last 2 weeks. On further questioning, you learn that she frequently sits on the toilet with the urge to defecate, but does not actually have bowel movements. On physical examination, the patient has LLQ tenderness and red blood is visible on digital rectal examination. You decide to order a flexible sigmoidoscopy, expecting to see continuous inflammation of the colon with rectal involvement and friable mucosal pseudopolyps.
Ulcerative Colitis

| Etiology and Epidemiology | May be related to immune system dysfunction
<table>
<thead>
<tr>
<th></th>
<th>Occurs most commonly in women between ages of 20 and 25, but affects all ages</th>
</tr>
</thead>
</table>
| **Pathology** | **Gross:** Continuous lesions of the colon with rectal involvement; friable mucosal pseudopolyps (mucosal remnants of previous ulcerations) with free-hanging mesentery
| | **Microscopic:** Mononuclear inflammatory infiltrate in lamina propria; crypt abscesses and ulcers (neutrophilic infiltrate in crypt lumen); dysplastic changes in epithelial cells; submucosal fibrosis and glandular atrophy results from healed disease |
| **Clinical Manifestations** | May present with tenesmus (urge to defecate with ineffectual straining) or chronic diarrhea with blood and mucus.
| | *Extraintestinal manifestations:* Pyoderma gangrenosum (painful ulcerating boils) and primary sclerosing cholangitis (fibrosing chronic cholestasis that can lead to portal hypertension).
| | Complications include severe colonic stenosis, toxic megacolon (inflammation of myenteric plexuses leading to gangrene), and increased risk for colorectal adenocarcinoma
| | **Imaging:** Loss of haustrations causes lead-pipe appearance |
| **Treatment** | Antidiarrheals; sulfasalazine; glucocorticoids; immunosuppressants; proctocolectomy (with placement of ileostomy) is curative |
| **Notes** | Ulcerative colitis is considered an inflammatory bowel disease along with Crohn disease. |

102
A 55-year-old man with a family history of colon cancer comes into the clinic for his annual colon cancer screening. You perform a routine fecal occult blood test that results in a positive reading. A flexible sigmoidoscopy is ordered during which several pedunculated polyps are visualized and biopsied. You inform the patient that you think that the chance of malignant progression of these neoplasms is not high, but you will have to await the results of the biopsies to be certain these polyps are benign.
Adenomatous Polyps of the Colon

| Etiology and Epidemiology | Associated with familial predisposition (possible connection to mutation of tumor suppressor gene on chromosome 5)
<table>
<thead>
<tr>
<th></th>
<th>Present in 35% of adults > 50 years of age</th>
</tr>
</thead>
</table>
| **Pathology** | **Tubular adenomas (75%)**: Usually found in colon; small and pedunculated with stalk; dysplastic epithelium with hyperchromatic nuclei and loss of cell orientation
| | **Tubulovillous adenomas (15%)**: Resemble tubular adenomas but surface is covered by fingerlike villi, similar to villous adenomas
| | **Villous adenomas (10%)**: Usually found in rectum or sigmoid colon; broad-based (sessile) polyps with large numbers of fingerlike villi; villi have dysplastic columnar epithelium |
| **Clinical Manifestations** | Usually asymptomatic but can result in **rectal bleeding**, which may cause an iron deficiency anemia
| | Associated with **increased risk for colorectal adenocarcinoma** (especially with villous adenomas). |
| **Treatment** | Colonoscopic removal of adenomatous polyps; primary surgical resection of large sessile lesions
| | Aspirin and NSAIDs used to decrease incidence of adenomas and colorectal cancer |
| **Notes** | 103 |
A 20-year-old male patient presents to the gastroenterologist’s office for his annual sigmoidoscopy screening. He has been coming to your office every other year for the last 10 years because he has an immediate relative with a familial polyposis syndrome. You perform the flexible sigmoidoscopy and find over 100 adenomas in the colon. You order genetic testing, which confirms your presumptive diagnosis. After informing the patient of your findings, you suggest that he undergo total colectomy with ileoanal anastomosis to prevent the development of colorectal cancer.
Multiple Polyposis Syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Etiology</th>
<th>Clinical manifestations</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial Adenomatous Polyposis</td>
<td>Autosomal dominant condition caused by mutation of APC gene on chromosome 5</td>
<td>500–2500 colonic adenomas present at puberty</td>
<td>Prophylactic colectomy (100% evolve into colon cancer if not resected)</td>
</tr>
<tr>
<td>Hereditary Nonpolyposis Colorectal Cancer</td>
<td>Autosomal dominant condition caused by defect in DNA mismatch repair genes on chromosome 2, 3, or 7</td>
<td>Appearance of colonic adenomas in early adulthood; increased risk for colorectal cancer and other cancers (especially endometrial cancer)</td>
<td>Surgical resection</td>
</tr>
<tr>
<td>Peutz-Jeghers Syndrome</td>
<td>Autosomal dominant condition</td>
<td>Palpable hamartomatous (nonneoplastic) polyps of the colon and small intestine; melanotic macules in the mouth, lips, hands, and genitalia; no increased risk for colorectal cancer, but there is an increased risk of stomach, breast, ovarian, pancreatic, uterine, or lung cancer</td>
<td>Routine surveillance for malignancy</td>
</tr>
<tr>
<td>Gardner Syndrome and Turcot Syndrome</td>
<td>Autosomal dominant conditions associated with defects in APC gene on chromosome 5</td>
<td>Gardner: adenomatous polyps along with osteomas and soft-tissue tumors. Turcot: adenomatous polyps with CNS tumors. Both conditions carry increased risk for colorectal cancer.</td>
<td>Surgical resection</td>
</tr>
</tbody>
</table>
A 55-year-old white man presents to the clinic complaining of weakness and fatigue. After taking a detailed history, you learn that he has been suffering from intermittent rectal bleeding and loose stools and that he has lost 15 pounds over the last 2 months. His family history is significant for colon cancer. On physical examination, the patient has marked pallor and a positive stool guaiac test. Laboratory tests reveal an iron deficiency anemia and elevated CEA levels. You schedule a colonoscopy with biopsy for pathologic confirmation of your presumptive diagnosis.
Colorectal Adenocarcinoma

| Etiology and Epidemiology | Risk factors include adenomatous polyps, long-standing ulcerative colitis, low-fiber diet, old age, positive family history, hereditary nonpolyposis colorectal cancer (HNPCC), and familial adenomatous polyposis (FAP)
Most commonly occurs between the ages of 60 and 80 |
|--------------------------|---|
| Pathology | *Gross:* Appearance varies from polypoid mass (proximal colon) to lesions with ulcerated centers and irregular margins that circumscribe bowel (distal colon)
Microscopic: Dysplastic columnar cells in glandular formation; may produce mucin, some tumors may be anaplastic |
| Clinical Manifestations | Can be asymptomatic; if symptomatic, presents with **pallor, weight loss, intermittent diarrhea, LLQ pain,** or obstruction
Lab findings: **Positive stool guaiac test; increased serum CEA;** microcytic, hypochromic anemia (iron deficiency anemia secondary to GI bleed) |
| Treatment | Surgical resection; chemotherapy (5-FU) |
| Notes | Colorectal cancer is the second leading cause of death owing to malignancy in the United States. Preventive measures include screening all patients > 50 years of age with colonoscopy every 10 years. |
A 13-year-old girl presents to the emergency room with RLQ pain, nausea, and vomiting. Just 12 hours earlier, she was experiencing vague, colicky periumbilical pain. On physical examination, you find that the patient has a low-grade fever and localized tenderness with guarding in the RLQ when palpated. Laboratory studies show mild leukocytosis. You call the pediatric surgery team to prepare this patient for immediate surgery.
Acute Appendicitis

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Caused by obstruction of the appendix by a fecalith, inflammation, foreign body, or neoplasm. Peak incidence is between 10 and 30 years of age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Gross: Red, swollen appendix with fibrinous exudate. Microscopic: Neutrophilic infiltrate extending through to muscularis; abscess formation; ulcerations; congested vasculature.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Vague periumbilical pain that later localizes to RLQ pain; fever; anorexia; nausea; vomiting; psoas sign (pain on passive extension of right hip); obturator sign (pain with passive flexion and internal rotation of right hip). Complications include gangrene and perforation leading to peritonitis. Lab findings: Leukocytosis.</td>
</tr>
<tr>
<td>Treatment</td>
<td>Appendectomy.</td>
</tr>
<tr>
<td>Notes</td>
<td>Appendicitis is the most common abdominal surgical emergency, affecting 10% of population.</td>
</tr>
</tbody>
</table>
A 50-year-old man presents to the emergency room complaining of abdominal discomfort. Upon taking a complete history, you find that he has had a dull ache in the RUQ for nearly a week and that he had a low-grade fever and a sense of malaise during the same period. He also complains that his urine has progressively become darker and darker even though he has kept himself well-hydrated. On physical examination, you notice a yellow discoloration of the skin and yellowing of the whites of the eyes. His liver is tender and enlarged and he has appreciable ascites, gynecomastia, and asterixis. You order laboratory studies, specifically expecting to find increased urine bilirubin, decreased urine urobilinogen, and increased AST and ALT.
Jaundice

Etiology
Caused by hepatocellular disease, biliary obstruction, hemolytic anemia, and congenital hyperbilirubinemias

Pathophysiology
Bilirubin is formed by the degradation of heme. When heme is degraded outside the liver, bilirubin is bound to albumin (unconjugated bilirubin) and transported to the liver for processing. Hepatocytes normally conjugate bilirubin (conjugated bilirubin) and excrete it into bile. Bile enters the GI tract where it is eventually converted into urobilinogen by intestinal bacteria, reabsorbed and excreted in the urine. Only conjugated bilirubin is soluble and can be reabsorbed from the intestine. Pathologic processes cause increased production of bilirubin, decreased hepatic uptake or secretion of bilirubin, deficient conjugation, or impair the flow of bile that cause the accumulation of bilirubin, which leads to jaundice.

Clinical Manifestations
Jaundice presents with yellow discoloration of skin, sclera, and tissues, and dark urine

Lab findings: Depends on etiology of jaundice: (1) hepatocellular disease jaundice: conjugated and unconjugated hyperbilirubinemia, increased urine bilirubin, normal or decreased urine urobilinogen, increased ALT and AST, increased ALP; (2) biliary obstructive jaundice: conjugated hyperbilirubinemia, increased urine bilirubin, decreased urine urobilinogen, increased ALP, hypercholesterolemia; (3) hemolytic anemia jaundice: unconjugated hyperbilirubinemia, absent urine bilirubin (acholuria), increased urine urobilinogen

Treatment
Treat underlying cause

Notes

107
A 1-month-old boy presents to the clinic with jaundice. To determine the cause of his jaundice, you order a panel of liver function tests. Results from the studies show an increased unconjugated bilirubin level in the serum and low fecal urobilinogen. Further genetic testing shows the child has a lack of bilirubin UDP glucuronyl transferase, an autosomal recessive condition. Although you place the child on plasmapheresis and phototherapy, he inevitably develops CNS deterioration and dies within the year.
Congenital Hyperbilirubinemias

<table>
<thead>
<tr>
<th>Condition</th>
<th>Etiology:</th>
<th>Clinical manifestations:</th>
<th>Treatment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilbert Syndrome</td>
<td>Autosomal dominant condition resulting in decreased UDP-glucuronyl transferase activity and decreased bilirubin uptake by liver</td>
<td>Usually asymptomatic; mild scleral icterus, may be triggered by stress; unconjugated hyperbilirubinemia</td>
<td></td>
</tr>
<tr>
<td>Crigler-Najjar Syndromes</td>
<td>Autosomal recessive (type I) or autosomal dominant with variable penetrance (type II) conditions resulting in absent UDP-glucuronyl transferase activity</td>
<td>Type I more severe than type II; presents early in life with jaundice; kernicterus and CNS deterioration; unconjugated hyperbilirubinemia</td>
<td>Plasmapheresis and phototherapy (type I); phenobarbital (type II)</td>
</tr>
<tr>
<td>Dubin-Johnson Syndrome and Rotor Syndrome</td>
<td>Autosomal recessive conditions resulting from defective bilirubin transport out of liver</td>
<td>Intermittent jaundice; RUQ and epigastric pain; conjugated hyperbilirubinemia; mildly elevated LFTs; black liver (D-J syndrome); Rotor syndrome is less severe</td>
<td></td>
</tr>
</tbody>
</table>

Notes
Make sure to differentiate hereditary hyperbilirubinemias from physiologic jaundice of the newborn (**neonatal hyperbilirubinemia**), which appears in the first week of life and is caused by increased bilirubin production and relative deficiency of **UDP-glucuronyl transferase** in the immature liver.
A 30-year-old man presents to the clinic complaining of abdominal pain and dark urine. While taking a history, you note that the pain is localized to the RUQ and has been present for over 6 months. On physical examination, you notice yellowing of the skin as well as of the whites of the eyes. Hepatomegaly is present on abdominal palpation. The patient states that he is sexually active and has, on occasion, not practiced safe sex. He also admits to IV drug use. You order serum studies expecting to find elevated ALT and AST levels. You also order studies looking for serologic markers specific to this patient’s most likely diagnosis.
Viral Hepatitis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>HAV and HEV are transmitted fecal-orally. HBV, HCV, HDV are blood-borne viruses</th>
</tr>
</thead>
</table>
| Pathology | **Acute hepatitis (all strains):** *Gross:* enlarged, red liver (green if cholestatic). *Microscopic:* swelling of hepatocytes; ground-glass hepatocytes (HBV); cholestasis; macrophage aggregation; bridging necrosis; portal tract inflammation; hyperplasia of Kupffer cells.
Chronic hepatitis (HBV, HCV, HDV): *Gross:* cirrhotic liver with fibrous septa and irregular nodules. *Microscopic:* bridging fibrosis of the portal and periportal regions; lymphoid aggregates. |
| Clinical Manifestations | Abdominal pain; dark urine; hepatomegaly; jaundice; scleral icterus
HBV and HCV have a strong association with chronic active hepatitis, cirrhosis, and *hepatocellular carcinoma*
Lab findings: Elevated ALT and AST levels
Serologic markers: IgM antibody to HAV detects active HAV infection. IgG antibody to HAV indicates old HAV infection and is protective. HBsAg indicates infection (prolonged in *carrier state*). Antibody to HBs provides immunity to HBV. IgM antibody to HBeAg is important for diagnosis of acute disease during window period. Antibody to HBeAg indicates low transmissibility. |
| Treatment | Vaccinations for HAV and HBV. HBV treated with antivirals (ie, entecavir). HCV treated with PEG-interferon and ribavirin. |
| Notes | HCV is a common cause of hepatitis among IV drug users. HEV causes increased mortality among pregnant women. |
A 33-year-old female presents to the clinic complaining of abdominal bloating and yellowing of her skin. She has a past medical history significant for Hashimoto thyroiditis and takes Synthroid for this condition. On physical examination, you notice jaundice as well as the appearance of multiple spider nevi and hepatomegaly. Initial laboratory studies reveal elevated bilirubins and transaminases as well as elevated globulin levels. While you order a panel of autoimmune studies and arrange for a liver biopsy, you begin to suspect that this patient may benefit from treatment with steroids.
Autoimmune Hepatitis

Etiology and Epidemiology
Autoimmune disorder, often found in conjunction with other autoimmune disorders (Sjögren syndrome, thyroiditis, ulcerative colitis, arthritis)

Most common in young women, although can affect all ages

Pathology
Gross: Cirrhotic liver with fibrous septa and nodular appearance

Microscopic: Bridging fibrosis of the portal and periportal regions; hepatocyte necrosis

Clinical Manifestations
May be asymptomatic initially or may present with acute hepatitis, hepatomegaly, spider nevi, and amenorrhea

Lab findings: Elevated gamma-globulin levels, elevated bilirubins and transaminases, positive antinuclear antibody (ANA), positive anti-smooth-muscle antibody (ASMA) (type 1), positive anti-liver-kidney microsome antibody (LKM-1) (type 2)

Treatment
Prednisone with or without azathioprine

Notes
A 52-year-old man presents to the clinic complaining of fatigue, abdominal bloating, and loss of sex drive. Upon taking his history, you learn that the symptoms have come on slowly over the last year and that he is a recovering alcoholic. On physical examination, you note painful swelling of the breasts bilaterally, ascites, scleral icterus, jaundice, abnormally strong halitosis, several capillary telangiectasias on his face, loss of sexual hair, and 3+ ankle edema bilaterally. While awaiting laboratory studies, you start diuretic therapy and encourage continued abstinence from alcohol.
Hepatic Cirrhosis

Etiology
- **Micronodular:** Alcoholism; hemochromatosis; Wilson disease
- **Macronodular:** HBV and HCV; drug-induced hepatitis; biliary cirrhosis; Wilson disease; α1-antitrypsin deficiency; progressed alcoholic micronodular cirrhosis

Pathology and Pathophysiology
- **Gross:** Micronodular cirrhosis has uniform nodules < 3 mm; macronodular cirrhosis has broad fibrous bands dividing liver into irregular nodules > 3 mm
- **Microscopic:** Diffuse fibrosis of the liver followed by nodular regeneration lacking normal hepatic architecture; reorganization of vascular architecture
- **Pathophysiology:** Liver destruction leads to increased portal venous pressure, decreased plasma oncotic pressure (hypoalbuminemia), and decreased degradation of aldosterone, resulting in peripheral edema and ascites

Clinical Manifestations
- Weakness; weight loss; ascites; vomiting; jaundice; fetor hepaticus (corpse-smelling breath); spider nevi (capillary telangiectasias of face); gynecomastia; loss of sexual hair; testicular atrophy; asterixis (coarse hand tremor); ankle edema.
- Complications include hepatic encephalopathy (ammonia acts as neurotoxin), hepatorenal syndrome, and increased risk of hepatocellular carcinoma
- **Lab findings:** Anemia; prolonged PT (resulting from coagulation-factor deficiency); hypoalbuminemia; hyperbilirubinemia; increased ALT, AST, and ALP; high blood ammonia levels

Treatment
- Alcohol abstinence; low-salt diet; diuretic therapy; vitamin supplementation

Notes

111
A 48-year-old woman presents to the clinic with nausea and abdominal pain after a weekend of binge drinking. She complains that she has lost her appetite and you notice that she is jaundiced and has mild hepatomegaly upon palpation. You order serum studies that show an AST:ALT ratio of 2.5, as well as leukocytosis. Her serum ALP is also slightly elevated. You suspect that a liver biopsy would demonstrate macrovesicular fat, neutrophil infiltration with hepatic necrosis, Mallory bodies, and perhaps micronodular cirrhosis.
Alcoholic Liver Disease

Etiology and Epidemiology

- Ethanol consumption
- Occurs more commonly in women

Pathology

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic steatosis (fatty liver)</td>
<td>Early and reversible change; yellow greasy liver; accumulation of lipid droplets in centrilobular hepatocytes</td>
</tr>
<tr>
<td>Alcoholic hepatitis</td>
<td>Hepatocyte swelling and necrosis; Mallory bodies (intracytoplasmic eosinophilic hyaline bodies); neutrophilic infiltration of hepatocytes; sinusoidal and perivenular fibrosis</td>
</tr>
<tr>
<td>Alcoholic cirrhosis</td>
<td>Late change; fatty enlarged liver that may become brown and shrunken; irregular nodularity with hobnail appearance; fibrosis of liver with loss of hepatic architecture</td>
</tr>
</tbody>
</table>

Clinical Manifestations

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic steatosis</td>
<td>Mild hyperbilirubinemia; increased ALP</td>
</tr>
<tr>
<td>Alcoholic hepatitis</td>
<td>Occurs after bout of heavy drinking; anorexia; abdominal pain; hepatomegaly; AST:ALT > 1.5; leukocytosis</td>
</tr>
<tr>
<td>Alcoholic cirrhosis</td>
<td>Portal hypertension; jaundice; ascites; elevated LFTs</td>
</tr>
</tbody>
</table>

Treatment

- Abstinence from alcohol; vitamin supplementation (especially folate and thiamine); methylprednisolone in severe cases of alcoholic hepatitis

Notes

- Fatty liver is also seen in Reye syndrome (viral infection and salicylate use in children), tetracycline toxicity, diabetes, malabsorption syndromes, Kwashiorkor, and hepatic failure in pregnancy.
A 48-year-old woman presents to the clinic complaining of increased itching. She has a 10-year history of Sjögren syndrome that is well-managed with symptomatic relief. On physical examination, you note severe jaundice, evidence of intense scratching, xanthomas in her skin and eyelids, and mild hepatosplenomegaly. You order serum studies that show hypercholesterolemia, elevated ALP, antimitochondrial antibodies, and an elevated IgM level. You prescribe cholestyramine for her itching and you worry that her condition may eventually progress to liver failure.
Biliary Cirrhosis

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Primary biliary cirrhosis (PBC): Autoimmune origin; can occur with other autoimmune diseases (Sjögren syndrome, thyroiditis, rheumatoid arthritis); most common in women 40–60 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary biliary cirrhosis (SBC): Caused by extrahepatic biliary obstruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology and Pathophysiology</th>
<th>PBC: Gross: progressive green tint to liver. Microscopic: destruction of bile ducts by periportal granuloma formation; lymphocytic infiltrate in portal tract; eventual destruction of hepatic parenchyma leading to hepatic cirrhosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBC: Gross: yellow-green liver. Microscopic: fibrous septa; variation in bile duct size; bile lakes (accumulation of bile in hepatic parenchyma); bile stasis. Pathophysiology: extrahepatic biliary obstruction leads to an increase in intrahepatic duct pressure leading to ductal injury and eventual fibrosis; can be complicated by ascending cholangitis (bacterial infection of intrahepatic ducts).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th>Severe obstructive jaundice; pruritus; xanthomas; hepatosplenomegaly; eventual liver failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab findings: Hypercholesterolemia, increased ALP, antimitochondrial antibodies (PBC)</td>
</tr>
</tbody>
</table>

| Treatment | Ursodeoxycholic acid; cholestyramine for itching; liver transplant in severe disease |

| Notes | **Primary sclerosing cholangitis** occurs in young men and is often associated with ulcerative colitis. It is characterized by fibrosis and stricturing of intra- and extrahepatic ducts with resulting cholestasis. It presents with jaundice, RUQ pain, and elevated ALP and bilirubins. Treatment includes endoscopic dilation of bile ducts, ursodeoxycholic acid, and transplant for severe cases. |
A 55-year-old man presents to the clinic complaining of weakness, fatigability, weight loss, and anorexia. He notes that he is more thirsty and is urinating more frequently than usual. On physical examination, you note scleral icterus, jaundice, gynecomastia, and hyperpigmentation of the skin on his trunk and extremities. You order serum studies, which reveal mildly elevated LFTs, increased serum iron, decreased TIBC, a transferrin saturation of 85%, and a serum ferritin level of 1500 μg/L. You explain to the patient that his disease will need to be treated with weekly phlebotomy and deferoxamine and that members of his family should consider undergoing genetic testing to see if they are susceptible to this condition.
Hemochromatosis

| Etiology and Epidemiology | Primary hemochromatosis: Autosomal recessive condition involving a mutation on chr 6 causing excessive absorption of iron in the intestinal mucosa; associated with HLA-A3. Most commonly seen in northern Europeans with onset of disease after age 50.
Secondary hemochromatosis: Acquired disease caused by chronic transfusion therapy combined with ineffective erythropoiesis. It is seen in thalassemia major and iron overload syndromes. |
|---------------------------|---|
| Pathology | Accumulation of iron as hemosiderin in liver, pancreas, heart, adrenals, testes, pituitary, kidneys, and skin
Liver: Gross: large; deep-brown; **micronodular.** *Microscopic:* accumulations of parenchymal hemosiderin beginning in periportal hepatocytes; eventually progresses to cirrhosis. |
| Clinical Manifestations | Classic triad of cirrhosis, diabetes, and skin hyperpigmentation (bronze diabetes); arthropathy; hepatomegaly; cardiac disease.
Complications include increased risk of infection with *Vibrio vulnificus, Listeria,* and other iron-loving organisms and **increased risk of hepatocellular carcinoma**
Lab findings: Mildly elevated LFTs, **increased serum iron,** decreased TIBC, transferrin saturation > 80%, serum ferritin > 1000 μg/L |
| Treatment | Weekly phlebotomy and deferoxamine
Prevention of primary hemochromatosis by screening for increased transferrin saturation in neonatal period |

Notes

114
An 8-year-old boy presents to the clinic because his parents have noticed strange, jerky movements and drastic changes in his behavior and personality. His parents tell you that he has become much more emotionally labile and has been making statements that are out of context and incomprehensible. On physical examination, you see a brownish ring around the superior and inferior poles of the cornea. He has a resting tremor in both arms and hands. You order laboratory studies, which show a decreased serum ceruloplasmin and elevated levels of copper, amino acids, and glycogen in the urine. You begin the patient on penicillamine to increase urinary excretion of chelated copper.
Wilson Disease

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Rare autosomal recessive disorder involving a mutation of copper-transporting protein leading to defective conjugation of copper to ceruloplasmin. Onset of disease occurs between first and third decades.</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology*: **Increased copper absorption in the gut** and **decreased excretion via bile** leads to **copper accumulation throughout the body**, especially in the parenchymal cells of the liver, kidney, brain, and cornea.
Liver: Varies from acute and chronic hepatitis to (micronodular or macronodular) **cirrhosis**; Mallory bodies (intracytoplasmic hyaline bodies) are apparent on biopsy.
Brain: Atrophy and cavitation of basal ganglia. |
| **Clinical Manifestations** | Hepatitis; hypersplenism; hemolytic anemia; portal hypertension; **psychosis** or dementia; Kayser-Fleischer rings (thin brown rings around corneas on eye examination); **choreiform movements** (extrapyramidal motor signs similar to those in Parkinson disease). Complications include an **increased risk of hepatocellular carcinoma**.
Lab findings: **Decreased serum ceruloplasmin**, hypercupriuria (copper in urine), aminoaciduria, glycosuria. |
| **Treatment** | **Penicillamine** |
| **Notes** | |
A 45-year-old woman presents to the clinic complaining of spitting up red blood. After taking a complete history, you learn that she has also recently started suffering from hemorrhoids with red blood found on the toilet paper after bowel movements. She had been previously healthy and she denies any significant alcohol use, history of hepatitis, or drug use. Her vital signs are notable for a blood pressure of 100/50. On physical examination, you note that she has pallor, ascites, and marked splenomegaly. Varices are seen around her belly button and external hemorrhoids are visible on rectal examination. You order laboratory studies that show normal LFTs, but evidence of hypersplenism. While awaiting imaging testing, you begin to suspect that a splenectomy would be curative for the underlying disease, which is causing her symptoms.
Portal Hypertension

Etiology

- **Pre-hepatic portal venous obstruction:** caused by portal vein thrombosis or splenic vein obstruction
- **Intra-hepatic portal venous obstruction:** caused by cirrhosis, metastatic tumor, or schistosomiasis
- **Post-hepatic portal venous obstruction:** caused by constrictive pericarditis, tricuspid insufficiency, CHF, or Budd-Chiari syndrome

Pathophysiology

Portal venous obstruction results in increased use of venous collaterals of the portal-systemic anastomoses, leading to varices in the submucosal veins of the esophagus, rectal veins, and paraumbilical-inferior epigastric veins. Furthermore, increased portal vein pressure results in decreased capillary fluid resorption, leading to collection of fluid in the peritoneal cavity (ascites).

Clinical Manifestations

- Splenomegaly
- **Esophageal varices; hemorrhoids; caput medusae** (periumbilical varicose veins), **hematemesis**
- Spider angiomas
- Hypotension
- Pallor
- **Ascites**

Treatment

- Splenectomy is curative for portal hypertension caused by splenic vein thrombosis. Band ligation or sclerotherapy for variceal bleeding. **Anticoagulation** for isolated portal vein thrombosis.
- Treatment of cirrhosis.

Notes

- 116
A 45-year-old white man with a history of paroxysmal nocturnal hemoglobinuria presents to the clinic with severe RUQ abdominal pain. He tells you that he has been vomiting off and on for the last 2 weeks. On physical examination, you note jaundice, painful hepatic enlargement, splenomegaly, mild ascites, visible abdominal and back veins when standing, and pedal edema. You order serum studies that are noteworthy for elevated LFTs. When a duplex Doppler ultrasonography reveals evidence of a thrombosis of the hepatic veins, you immediately begin this patient on thrombolytic therapy.
Budd-Chiari Syndrome

| **Etiology and Epidemiology** | Caused by **thrombotic occlusion of the hepatic veins**
Associated with polycythemia vera, pregnancy, hepatocellular carcinoma, blunt abdominal trauma, oral contraceptive use, and paroxysmal nocturnal hemoglobinuria |
| **Pathology** | Liver: **Centrilobular congestion and necrosis** with sinusoidal dilatation; eventual development of centrilobular fibrosis; thrombi in major veins |
| **Clinical Manifestations** | Tender, **painful hepatic enlargement**; jaundice; scleral icterus; splenomegaly; vomiting; ascites; **visible abdominal and back veins** when standing; pedal edema; absence of JVD (versus right heart failure); may lead to eventual liver failure
Imaging: Detection of hepatic venous or IVC thrombosis on Doppler ultrasound or CT scan
Lab findings: Elevated LFTs |
| **Treatment** | Balloon angioplasty; thrombolytic therapy into hepatic vein; surgical bypass of obstruction; diuretics and salt restriction (for ascites) |
| **Notes** | |

117
A 53-year-old African American man with known alcoholic cirrhosis presents to the clinic with increased abdominal girth and a fever. He tells you that he has noticed a fever for the last 2 weeks and that he has lost 10 pounds over the last month. On physical examination, you note jaundice, scleral icterus, hepatomegaly, and increased ascites. Laboratory studies reveal leukocytosis, anemia, and a sudden increase in serum ALP that did not exist previously. An elevated AFP level is also detected. When a CT scan of the abdomen reveals a large hepatic mass, you order a liver biopsy to confirm your suspected diagnosis.
Hepatocellular Carcinoma

Etiology
Risk factors include **alcoholic cirrhosis**, **HBV**, **HCV**, hemochromatosis, Wilson disease, **α-1-antitrypsin deficiency**, and hepatic carcinogens (eg, aflatoxin B1).

Pathology

Gross: May appear as single mass, multiple masses, or infiltrative carcinoma; pale and green tinted

Microscopic: Tumors range from cords or sheets of cells roughly resembling hepatic parenchyma to anaplastic masses; may invade portal veins or IVC

Commonly spread by **hematogenous dissemination**, often to the lungs, vertebrae, adrenals, or brain

Clinical Manifestations
Fever; weight loss; **worsening hepatomegaly; worsening or bloody ascites**; cirrhotic symptoms

Lab findings: **Elevated AFP**, leukocytosis, anemia, sudden elevation of ALP

Treatment and Prognosis
Surgical resection; chemotherapy; radiotherapy; liver transplantation

Death often occurs within 10 months of diagnosis

Notes
Hepatocellular carcinoma is the most common primary malignant tumor of the liver in adults.

Cholangiocarcinoma is an aggressive tumor arising from the intrahepatic biliary ducts. It is associated with *Clonorchis sinensis* infestation and primary sclerosing cholangitis.

Liver adenomas are related to oral contraceptive use and can result in intraperitoneal hemorrhage.

Liver angiosarcomas are related to polyvinyl chloride (Thorotrast) exposure.

118
A 48-year-old woman with a history of gallstones presents to the clinic complaining of a 1-day history of nausea, vomiting, and abdominal pain. She characterizes the abdominal pain as severe and steady and localized to the epigastric and RUQ region of her abdomen. Her vital signs are notable for a temperature of 101.1°F and you note inspiratory arrest on RUQ palpation. You order serum studies that demonstrate increased ALP, leukocytosis, and mild hyperbilirubinemia. You start her on antibiotics, but you suspect that she likely will need surgical intervention in the future to treat her condition.
Acute and Chronic Cholecystitis

Etiology and Epidemiology

Acute: Usually of **infectious origin** (CMV, Cryptococcus); trauma or burns; postoperative state

Chronic: Frequent complication of **gallstones** (most common cause of cholecystitis); repeated bouts of acute cholecystitis

Cholecystitis is most commonly seen in **women over the age of 40**

Pathology

Acute: *Gross:* enlarged and discolored gallbladder; may see obstructing stone at neck; cloudy or purulent bile in lumen. *Microscopic:* thickened and edematous wall; **inflammatory infiltrate** with vascular congestion.

Chronic: *Gross:* thickening of gallbladder wall as a result of extensive fibrosis. *Microscopic:* subepithelial fibrosis with **mononuclear infiltrate**; outpouching of mucosal epithelium through wall (Rokitansky-Aschoff sinuses).

Clinical Manifestations

Acute: Nausea; vomiting; fever; **RUQ pain upon palpation**; **Murphy sign** (inspiratory arrest on RUQ palpation). *Lab findings:* increased ALP; leukocytosis; mild hyperbilirubinemia.

Chronic: Nausea; vomiting; recurrent episodes of colicky **RUQ pain**; **intolerance to fatty foods**

Complications include bacterial superinfection and gallbladder perforation or obstruction

Treatment

Antibiotics; cholecystectomy

Notes
A 60-year-old Native American woman presents to the clinic complaining of a 3-month history of severe RUQ pain. On history, you learn that she has given birth to 5 children, is postmenopausal, and is currently taking HRT. She reports that the pain is exacerbated after she takes her grandchildren out for fast food and indulges in greasy foods herself. She also confesses that she does drink quite a bit on the weekends and feels abdominal pain shortly afterward as well. On physical examination, you note mild tenderness in the RUQ. You order an ultrasound, which you are confident will confirm your suspected diagnosis.
Cholelithiasis (Gallstones)

Etiology and Epidemiology

Cholesterol stones: Associated with obesity, older age, Crohn disease, cystic fibrosis, multiparity, rapid weight loss, clofibrate use, estrogen use, and native American heritage

Pigment stones: Associated with alcoholic cirrhosis, hemolytic anemia, biliary tract infection, and older age

Cholelithiasis is most commonly seen in **obese, multiparous women over the age of 40**

Pathology and Pathophysiology

Pathophysiology: Stones form when cholesterol and bilirubin overwhelm solubilizing bile acids and lecithin in the gallbladder

Cholesterol stones: Radiolucent, although 10%–20% may be opaque owing to calcification

Pigment stones: Radio-opaque; composed of bile pigments

Mixed stones: Radiolucent; composed of both cholesterol and bile pigments; most common type

Clinical Manifestations

Usually asymptomatic, but may present with **Charcot triad:** severe colicky epigastric and RUQ pain (especially after fatty meal), spiking fever, and jaundice

Complications include biliary colic, common bile duct obstruction, cholecystitis, acute pancreatitis, gallstone ileus, ascending cholangitis, and possible adenocarcinoma of the gallbladder

Treatment

Cholecystectomy if symptomatic; no treatment if asymptomatic

Notes

120
A 52-year-old woman presents to the clinic with epigastric and RUQ pain, which is especially severe after a fatty meal. She also reports that her appetite has decreased and that she has lost 10 pounds over the last month. Physical examination reveals a fever of 102°F, jaundice, and scleral icterus. An ultrasound is suggestive of cholecystitis and a cholecystectomy is performed. Histologic examination of the gallbladder reveals an adenocarcinoma with an infiltrating pattern of growth with diffuse thickening of the wall of the gallbladder. You inform the patient of this diagnostic finding and suggest that she return for a follow-up visit immediately.
Tumors of Gallbladder and Biliary Ducts

Etiology and Epidemiology

Adenocarcinoma of the gallbladder (AGB): Associated with gallstones; most common primary tumor of the gallbladder; most commonly presents in women after age 60.

Carcinoma of extrahepatic biliary ducts and the ampulla of Vater (EBD): Rare; associated with *Clonorchis sinensis* infection, primary sclerosing cholangitis or IBD; most commonly presents in elderly men.

Pathology

AGB: *Gross:* infiltrating pattern of growth shows diffuse thickening of gallbladder wall; exophytic pattern grows into lumen as irregular cauliflower mass. *Microscopic:* adenocarcinoma with varying degrees of differentiation; often invades liver.

EBD: *Gross:* small gray nodules in wall of bile duct. *Microscopic:* adenocarcinoma with mucin-secreting cells; fibrous stroma; epithelial proliferation.

Clinical Manifestations

AGB: Presenting symptoms are insidious and **indistinguishable from gallstones** (abdominal pain, jaundice, anorexia, and nausea and vomiting).

EBD: Presents with **progressive, relentless obstructive jaundice,** nausea/vomiting, weight loss, and a painless, **palpably enlarged gallbladder** (not seen in gallstone disease).

Lab findings for both types: Elevated LFTs, prolonged PT

Treatment

AGB: Cholecystectomy; chemotherapy; radiotherapy.

EBD: Ductal cancers are not amenable to surgical resection and are treated with chemotherapy and/or radiotherapy; ampullary cancers are usually resected.

Notes

121
A 42-year-old man presents to the emergency room with severe epigastric and LUQ abdominal pain radiating to the back. He reports nausea and vomiting for the last 24 hours. He also confesses to binge drinking over 2 days prior to the onset of symptoms and he admits to similar symptoms after binge drinking in the past. His past medical history is significant for hyperlipidemia. On physical examination, you note diaphoresis, a fever of 102.8°F, and that the abdomen is distended and tender to palpation of the epigastric and LUQ regions. You order serum studies that are significant for leukocytosis and elevated serum lipase and amylase. You put the patient on pancreatic rest, involving IV fluids and no oral intake, and you allow him to have Demerol as needed for his pain.
Acute and Chronic Pancreatitis

| **Etiology** | **Acute:** Caused by activation of pancreatic enzymes resulting in organ autodigestion; associated with alcohol, gallstones, hyperlipidemia, hypercalcemia, drugs (thiazides, sulfonamides), mumps infection, and autoimmune disease
| **Chronic:** Caused by repeated bouts of pancreatic inflammation; associated with alcoholism and cystic fibrosis |
| **Pathology** | **Acute:** *Gross:* hemorrhagic areas with areas of white fat necrosis. *Microscopic:* interstitial edema and inflammation; necrosis of parenchyma with vascular damage; calcium soap deposition.
Chronic: *Gross:* fibrotic bands producing a lobular appearance; calcified concretions; pseudocyst formation. *Microscopic:* destruction of acini (islets of Langerhans spared) with fibrous replacement; mononuclear inflammatory infiltrate. |
| **Clinical Manifestations** | **Acute:** Severe epigastric and LUQ abdominal pain radiating to the back; nausea; vomiting; fever; may occur after increased alcohol intake
Chronic: Recurrent attacks of abdominal and back pain; development of pancreatic insufficiency and diabetes
Lab findings for both acute and chronic: Leukocytosis, elevated serum lipase and amylase
Complications include DIC, ARDS, diffuse fat necrosis, tetany, and acute renal failure |
| **Treatment** | Food restriction and IV fluids; Demerol for pain control; enzyme and insulin replacement for pancreatic insufficiency |
| **Notes** | |
A 55-year-old man presents to the clinic complaining of generalized malaise and weakness, a 15-pound weight loss over the last 6 weeks, and anorexia. On physical examination, you note marked jaundice. There is also redness and tenderness on palpation of his extremities, which is consistent with the finding of migratory thrombophlebitis. You order laboratory studies that show increased direct bilirubin, increased ALP, as well as a positive CA 19-9 marker. You begin to fear that this patient may have a very severe disease with an extremely poor prognosis.
Pancreatic Carcinoma

Etiology
Risk factors include chronic pancreatitis, smoking, alcohol, high-fat diet, chronic gallbladder disease, and diabetes

Associated with mutation of K-ras oncogene and p53 tumor suppressor gene

Pathology

Gross: May arise in head (60%), body (15%), or tail (5%) of pancreas, or involve whole organ (20%); grayish mass that may block ampullary region leading to bile duct obstruction and **dilated intrahepatic ducts**

Microscopic: **Adenocarcinoma** with variable degree of differentiation; tumor cells form clusters or tubular structures with invasive growth pattern; malignant glands may be formed by anaplastic cuboidal epithelium; **stromal fibrosis**

Clinical Manifestations
Often **clinically silent until widespread metastasis**, usually to lung or bone. Presents with **upper abdominal pain radiating to the back**, weight loss, anorexia, migratory thrombophlebitis (**Trousseau syndrome**), **painless obstructive jaundice**, and a palpable gallbladder (because of common bile duct obstruction).

Lab findings: Increased direct bilirubin, increased **ALP**, increased **CEA levels**, increased **CA 19-9 levels**

Treatment and Prognosis
Radical pancreaticoduodenal resection (Whipple procedure) in 30% of patients; adjuvant radiotherapy and chemotherapy

Overall 5-year survival rate is **< 4%**
Disorders of the Renal System

Glomerular Diseases

Nephritic Syndrome
- Lupus Nephropathy
- Poststreptococcal Glomerulonephritis
- Rapidly Progressive (Crescentic) Glomerulonephritis
- Alport Syndrome
- Membranoproliferative Glomerulonephritis
- IgA Nephropathy

Nephrotic Syndrome
- Minimal Change Disease
- Membranous Glomerulonephritis
- Focal Segmental Glomerulosclerosis
- Diabetic Nephropathy

Disorders of the Renal Parenchyma
- Acute and Chronic Pyelonephritis
- Acute Tubular Necrosis
- Adult and Infantile Polycystic Kidney Disease

Metabolic Disorders
- Metabolic Acidosis
- Metabolic Alkalosis
- Respiratory Acidosis
- Respiratory Alkalosis

Other Disorders
- Acute Renal Failure
- Urolithiasis

Neoplasms
- Renal Cell Carcinoma
- Transitional Cell Carcinoma
- Wilms Tumor
Renal System

GLOMERULAR FILTRATION

Filtration Barrier
• Composed of the fenestrated capillary endothelium, the fused glomerular basement membrane, and the podocyte foot processes epithelial layer
• The capillary endothelium serves as a size barrier while the basement membrane contains heparin sulfate, which leads to a negative charge barrier preventing protein filtration

Glomerular Filtration Rate (GFR) and Filtration Fraction
• GFR can be estimated by the clearance of creatinine ($C_{\text{creatinine}}$)
• The effective renal plasma flow (RPF) can be estimated by the clearance of para-aminohippuric acid (C_{PAH})
• The filtration fraction (fraction of RPF filtered across glomerular capillaries) is equal to GFR/RPF

CLINICAL MANIFESTATIONS OF NEPHROTIC AND NEPHRITIC SYNDROME

Nephrotic Syndrome
• Proteinuria: because of disruption of glomerular charge barrier
• Hypoalbuminemia: because of proteinuria
• Edema: because of decreased plasma oncotic pressure from proteinuria
• Hyperlipidemia and hypercholesterolemia: because of increase in lipoprotein synthesis

Nephritic Syndrome
• Oliguria and Azotemia: because of renal inflammation
• Hypertension: results from decreased clearance of sodium and water
• Hematuria: because of leakage of blood into Bowman capsule
A 4-year-old boy presents to the emergency room with a 1-week history of generalized edema and fatigue. Your history reveals that he suffered from a viral URI 1 week before this visit. Serum and urine studies reveal massive proteinuria, hyperlipidemia, and hypoalbuminemia. You suspect that a renal biopsy would show normal-appearing glomeruli on electron microscopy except for fusion of the epithelial foot processes and you begin the child on prednisone.
Minimal Change Disease (Lipoid Nephrosis)

| Etiology and Epidemiology | Etiology unknown, but usually occurs following a viral URI; associated with Hodgkin disease and hypersensitivity reactions
Most often seen in **young children**, but can occur in older children and adults |
|---------------------------|--|
| **Pathology** | *Light microscopy:* **Normal-appearing glomeruli;** can see **lipid accumulation** in renal tubular cells
Electron microscopy: **Fusion of epithelial foot processes** |
| **Clinical Manifestations**| **Nephrotic syndrome**
Complications include infection by gram-positive organism, thromboembolism, and protein malnutrition |
| **Treatment and Prognosis**| **Prednisone:** cyclophosphamide or chlorambucil for steroid-resistant cases
Response is excellent |
| **Notes** | Minimal change disease is the prototype of the nephrotic syndrome. |
A 40-year-old white woman with a history of SLE presents to your office with a chief complaint of increased swelling in her legs. She had been referred by her primary care physician, who suspected a secondary illness to her lupus. Recent laboratory studies show proteinuria, hypoalbuminemia, hyperlipidemia, and hypercholesterolemia. You suspect that a renal biopsy would demonstrate immune complex deposition on electron microscopy as well as a “spike and dome” appearance on silver methenamine stain.
Membranous Glomerulonephritis

Etiology and Epidemiology
An immune complex disease of unknown etiology

Secondary disease seen in 10% of SLE patients (type V Lupus Nephritis) and is sometimes associated with infections (eg, hepatitis B and C, syphilis, malaria), drugs (eg, gold salts, penicillamine, NSAIDs), or malignancy

Incidence is highest in adults

Pathology

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light microscopy</td>
<td>Diffuse capillary wall thickening and basement membrane thickening</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>Granular pattern of IgG or C3 deposits (lumpy-bumpy)</td>
</tr>
<tr>
<td>Electron microscopy</td>
<td>Electron dense immune complex deposition in subepithelial locations within the basement membrane of glomerular capillary walls</td>
</tr>
<tr>
<td>Silver methenamine stain</td>
<td>A spike-and-dome appearance resulting from the extension of basement membrane between and around the immune deposits (spikes = basement membrane, domes = immune complex deposits)</td>
</tr>
</tbody>
</table>

Clinical Manifestations
Nephrotic syndrome accompanied by **azotemia**

Complications include **renal vein thrombosis** and higher incidence of occult neoplasms of lung, stomach, and colon

Treatment
Cyclophosphamide or steroids; ACE inhibitors (reduce urinary protein loss); renal transplantation for severe cases

Notes
Membranous glomerulonephritis is a common cause of adult nephrotic syndrome.
A 40-year-old HIV-positive white man is admitted to the hospital complaining of generalized edema and fatigue. A complete history reveals that he is a habitual IV drug user. Laboratory studies show hypoalbuminemia, hyperlipidemia, proteinuria, and microscopic hematuria. You suspect that his current presentation is related to his HIV and you prepare the patient for a renal biopsy to determine the exact diagnosis.
Focal Segmental Glomerulosclerosis

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Often idiopathic, but has been associated with heroin use, morbid obesity, and HIV infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Most often occurs in older patients</td>
</tr>
<tr>
<td>Pathology</td>
<td>Light microscopy: Sclerosis within capillary tufts of deep juxtaglomerular glomeruli with focal distribution (involves some, but not all, glomeruli) and segmental distribution (involves only a part of the glomerulus); hyalinosis (deposition of hyaline masses) also seen</td>
</tr>
<tr>
<td></td>
<td>Immunofluorescence: IgM and C3 seen in sclerotic lesions</td>
</tr>
<tr>
<td></td>
<td>Electron microscopy: Fusion of epithelial foot processes</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Nephrotic syndrome; more severe disease in HIV and IV drug users</td>
</tr>
<tr>
<td></td>
<td>Lab findings: 80% have microscopic hematuria at presentation</td>
</tr>
<tr>
<td>Treatment and Prognosis</td>
<td>Prednisone</td>
</tr>
<tr>
<td></td>
<td>Most patients progress to ESRD in 5–10 years</td>
</tr>
</tbody>
</table>
A 60-year-old African American man with a 20-year history of type II DM presents for a nephrology consult after his primary care physician found a progressive increase of proteinuria in recent laboratory studies. These laboratory studies also showed hyperlipidemia and hypercholesterolemia. On physical examination, the patient has bilateral diabetic retinopathy and 2+ edema in both legs. You start the patient on an ACE inhibitor and you suspect that a renal biopsy would show Kimmelsteil-Wilson nodules.
Diabetic Nephropathy

Etiology and Epidemiology

Associated with long-standing diabetes

Type I diabetes carries 30%–40% chance of diabetic nephropathy after 20 years; type II diabetes carries 15%–20% chance after 20 years; however, because there are more patients with type II diabetes, ESRD is more prevalent among type II diabetics.

There is a higher risk of developing diabetic nephropathy among men, African Americans and Native Americans with diabetes.

Pathology

Light microscopy: Increase in mesangial matrix, resulting in either diffuse glomerulosclerosis (diffusely distributed increase in mesangial matrix) or nodular glomerulosclerosis (*Kimmelstiel-Wilson nodules*—nodular accumulations of mesangial matrix material)

Electron microscopy: Striking increase in glomerular basement membrane thickening

Clinical Manifestations

Nephrotic syndrome; diabetic retinopathy is invariably present

Lab findings: Microalbuminuria (early sign), proteinuria (late sign)

Treatment and Prognosis

Strict glycemic control; treatment of hypertension and microalbuminuria with ACE inhibitors during early stages to slow progression

Often progresses to ESRD and dialysis

Notes

Diabetic nephropathy is the most common cause of ESRD in the United States.
A 45-year-old white woman with a 15-year history of SLE presents to the nephrologist after her primary care physician found hematuria and proteinuria on a routine urinalysis. The patient has edema of the ankles on physical examination and she is experiencing a SLE flare-up with an extensive malar rash visible over her face. A renal biopsy is obtained and examination by light microscopy reveals wire-loop abnormalities. You examine the patient’s current immunosuppressive therapy to see what additional therapies should be added.
Lupus Nephropathy

Etiology
Renal component of SLE

Pathology
Five distinct renal histologic patterns: (1) **Type I**: normal; (2) **Type II** (*mesangial form*): focal and segmental glomerular involvement with increase in mesangial matrix; (3) **Type III** (*focal proliferative form*): involves less than half of glomeruli, causing extensive damage to individual glomeruli; (4) **Type IV** (*diffuse proliferative form*): most severe form involving all glomeruli with marked inflammation, mesangial proliferation, and scarring. *Light microscopy*: wire-loop abnormality caused by immune complex deposition and gross thickening of glomerular basement membrane. *Electron microscopy*: endothelial cell proliferation. *Immunofluorescence*: marked subendothelial immune complex deposition. (5) **Type V** (*membranous form*): similar to membranous glomerulonephritis.

Clinical Manifestations
- **Type I**: No clinical findings
- **Types II and III**: Mild to moderate proteinuria and hematuria
- **Type IV**: Combination of nephrotic and nephritic syndromes
- **Type V**: Nephrotic syndrome

Treatment
- **Types I and II**: No treatment
- **Types III, IV, and V**: Immunosuppression (corticosteroids, cyclophosphamide, and/or azathioprine)

Notes
Renal lesion severity often determines overall prognosis of SLE patients.
A 10-year-old girl presents to the clinic complaining of eye swelling. You note that the child was seen 3 weeks ago in clinic for a chief complaint of sore throat. Upon taking a history and performing a physical, you find that the patient has pronounced periorbital edema, has been urinating very little despite adequate fluid intake, and has a blood pressure of 150/90. Laboratory findings include azotemia, hematuria, red cell casts in the urine, and an elevated ASO antibody titer. You reassure the parents that their child’s condition will likely resolve on its own.
Poststreptococcal Glomerulonephritis (Acute Proliferative Glomerulonephritis)

Etiology and Epidemiology

Most frequently seen in **children** following infection with nephritogenic strains of **group A β-hemolytic streptococci**

Pathology

Gross pathology: Characterized by **intense inflammatory reaction** involving all glomeruli in both kidneys, resulting in **punctate hemorrhages** on kidney surfaces

Light microscopy: Enlarged, hypercellular, swollen glomeruli with proliferation of mesangial and endothelial cells; normal glomerular basement membrane thickness

Electron microscopy: **Electron-dense humps** on the epithelial side of the basement membrane (subepithelial localization)

Immunofluorescence: Coarse granular immunofluorescence for IgG or C3 (**lumpy-bumpy**)

Clinical Manifestations

Nephritic syndrome and periorbital edema

Lab findings: Urinary RBCs and/or red cell casts, decreased serum C3, elevated ASO antibody titer (evidence of recent streptococcal infection)

Treatment and Prognosis

Resolves spontaneously

Notes

Poststreptococcal glomerulonephritis is an **immune complex disease** with the antigen-antibody complex of streptococcal origin and is the prototype of the nephritic syndrome.
A 40-year-old white man is admitted to the hospital with complaints of blood in his sputum and urine. A thorough history also reveals fever, malaise, and a 10-pound weight loss over the past month. On physical examination, you find that his blood pressure is 160/95 and that he has several abnormal lung sounds. A urine dipstick demonstrates hematuria. CXR reveals several nodular lesions and blood tests show the presence of C-ANCA and an elevated ESR. You start the patient on a high dose of corticosteroids and you suspect that a renal biopsy would demonstrate crescent-moon shapes between the Bowman capsule and the glomerular tuft.
Rapidly Progressive (Crescentic) Glomerulonephritis

| **Etiology** | Type 1: Idiopathic or **Goodpasture syndrome**
Type 2 (immune complex): Idiopathic; postinfectious causes; SLE; **IgA nephropathy; Henoch-Schönlein purpura**
Type 3 (pauci-immune type): Idiopathic; **Wegener granulomatosis;** microscopic polyangiitis |
| **Pathology** | *Light microscopy:* Formation of **crescent-moon shape** between Bowman capsule and glomerular tuft, resulting from deposition of fibrin in the Bowman space and from proliferation of parietal epithelial cells of the Bowman capsule |
| **Clinical Manifestations** | **Nephritic syndrome;** progressing rapidly to renal failure within months
Signs and symptoms specific to each etiology (eg, hemoptysis and antiglomerular basement membrane antibodies in Goodpasture syndrome) |
| **Treatment and Prognosis** | Treat with diuretics and often eventual dialysis; immunosuppression if appropriate for underlying cause; may require transplantation
Rapid course to renal failure |
| **Notes** | RPGN refers to a syndrome associated with severe and progressive glomerular injury. It encompasses many different etiologies. |
A 10-year-old boy presents to the clinic complaining of a red tinge to his urine. A more detailed history reveals that he was diagnosed with mild nerve deafness 2 years earlier and also developed posterior cataracts 1 year ago. Laboratory studies confirm hematuria as well as the presence of erythrocyte casts. You begin to wonder if his conditions may be related to a genetic disorder.
Alport Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Genetic disorder with heterogenous inheritance (usually X-linked dominant) that results in the mutation of α-5 chain of type IV collagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Electron microscopy: Irregular foci of thickening or attenuation in the glomerular basement membrane with longitudinal splitting of the lamina densa</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Triad of nephritis, nerve deafness, and various eye disorders (cataracts, lens dislocation, corneal dystrophy); often initially presents with hematuria and erythrocyte casts</td>
</tr>
<tr>
<td>Treatment</td>
<td>ACE inhibitors; renal transplantation</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
A 25-year-old woman with a history of SLE is admitted to the hospital with generalized edema, malaise, and fatigue. You take a thorough history, which reveals that she had cold symptoms 2 weeks earlier. Laboratory studies show hypoalbuminemia, hypercholesterolemia, proteinuria, and low complement levels. When a renal biopsy shows reduplication of the basement membrane on electron microscopy, you adjust the patient’s current corticosteroid dose and decide to add an antiplatelet drug to her regimen.
Membranoproliferative Glomerulonephritis

| **Etiology and Epidemiology** | Associated with inherited complement component deficiency
Type I is seen in SLE, hepatitis B and C, and involves classic and alternative pathway activation
Type II involves only alternative pathway activation
Most patients are under the age of 30 |
|-------------------------------|--|
| **Pathology** | **Types I and II: ** *Light microscopy:* reduplication of basement membrane (*splitting*) and expansion of mesangial matrix into the capillary loops (*tram track* appearance)
**Type I: ** *Electron microscopy:* subendothelial electron-dense deposits
**Type II: ** *Electron microscopy:* characteristic *dense deposit* of homogeneous material within glomerular basement membrane |
| **Clinical Manifestations** | **Type I:** Commonly presents with *nephrotic* syndrome
Type II: Commonly presents with hematuria and chronic renal failure
Lab Findings: Decreased C3 levels, *elevated BUN and Cr, RBCs and/or RBC casts in urine* |
| **Treatment and Prognosis** | Corticosteroids and immunosuppression if appropriate for underlying cause
Slowly progresses to renal failure with a high recurrence rate after transplantation |
| **Notes** | |
A 15-year-old Asian American boy presents to the emergency room complaining of blood in his urine. Upon taking a complete history, you learn that he has also been suffering from fevers, myalgias, and arthralgias for the last 2 days. Serum studies reveal increased serum IgA levels and normal serum complement levels. You begin him on prednisone and you suspect that he is afflicted with the most common form of acute glomerulonephritis in the United States.
IgA Nephropathy (Berger Disease)

| **Etiology and Epidemiology** | Primary renal disease of **IgA deposition** in the glomerular mesangium that can manifest after infection (viral URI, GI infection, flu-like syndrome) or can be a component of **Henoch-Schönlein purpura**
Most commonly seen in children and young adults with men affected more often than women |
|---|---|
| **Pathology** | *Light microscopy:* Focal proliferative glomerulonephritis with diffuse mesangial widening
Electron microscopy: **Mesangial deposits of IgA** |
| **Clinical Manifestations** | Presents with **recurrent hematuria** (red or cola-colored urine) 1–2 days after an infection
Lab findings: Increased serum IgA level (50% of cases), normal serum complement levels |
| **Treatment and Prognosis** | Prednisone
Can progress to chronic renal failure |
| **Notes** | Berger disease is the most common form of acute glomerulonephritis in the United States and is also prevalent in Asia. |
A 25-year-old woman presents to the emergency room with fever, severe flank pain, and costovertebral angle tenderness. After taking a complete history, you find that she is sexually active and has had a 2-week history of burning pain while urinating and increased urinary frequency. Urinalysis reveals white cell casts in the urine and a urine sample is sent for culture. While you await the culture results, you start her on broad spectrum antibiotics.
Acute and Chronic Pyelonephritis

| **Etiology and Epidemiology** | **Acute:** Caused by infection of renal parenchyma; more frequent among women
Chronic: Results from chronic urinary tract obstruction and recurrent UTIs |
|-----------------------------|--|
| **Pathology** | **Acute:** Affects renal cortex with sparing of glomeruli; neutrophilic infiltration and abscess formation within renal interstitium; abscesses may rupture introducing WBCs into tubular lumen
Chronic: Asymmetric corticomedullary scarring; tubules contain eosinophilic, proteinaceous casts resulting in gross appearance reminiscent of thyroid follicles (**thyroidization of the kidneys**); in later stages, results in tubular atrophy and interstitial fibrosis |
| **Clinical Manifestations** | **Acute:** Fever; flank pain with CVA tenderness; polyuria and dysuria; nausea, vomiting, and diarrhea
Chronic: Recurrent episodes of acute pyelonephritis can lead to renal hypertension and ESRD
Lab findings: WBC and/or WBC casts in urine |
| **Treatment** | **Acute:** IV antibiotics
Chronic: Renal transplantation if progresses to ESRD |
| **Notes** | **Renal papillary necrosis** is a complication of acute pyelonephritis in diabetics or chronic phenacetin users and is characterized by ischemic necrosis of tips of renal papillae.
Diffuse cortical necrosis is an acute generalized infarction of renal cortices (medulla is spared) usually because of a combination of DIC and end-organ vasospasm in association with obstetric catastrophes or septic shock. |
A 60-year-old man is admitted to the intensive care unit with hypotension and severe sepsis. His hypotension gradually resolves with aggressive fluid resuscitation and pressor support. Over the next couple of days, he becomes progressively oliguric. Laboratory studies reveal worsening renal failure and hyperkalemia. His urine sediment demonstrates muddy brown casts. You worry that this patient may become progressively fluid overloaded and hyperkalemic and eventually need dialysis.
Acute Tubular Necrosis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Precipitated by renal ischemia (eg, prolonged hypertension, shock), crush injury (eg, intense exercise, myoglobinuria), contrast or nephrotoxic drugs (eg, aminoglycosides)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Kidney: Focal tubular epithelial necrosis; rupture of basement membranes; eosinophilic hyaline casts in collecting ducts; interstitial edema; evidence of epithelial regeneration (flattened epithelial cells with mitotic figures)</td>
</tr>
</tbody>
</table>
| Clinical Manifestations | Presents with signs of acute renal failure
Death owing to arrhythmia from hyperkalemia can occur during the initial oliguric phase
Lab findings: **Oliguria**, elevated urinary sodium (> 40 mEq/L), azotemia, **tubular epithelial cell casts** (**muddy-brown casts**) in urine, hyperkalemia |
| Treatment and Prognosis | Loop diuretics for diuresis; electrolyte and fluid level management (may require dialysis)
May recover renal function or may lead to ESRD |
| Notes | Acute tubular necrosis is the most common cause of acute renal failure.
Acute drug-induced interstitial nephritis is caused by penicillin derivatives (eg, methicillin), NSAIDs, and diuretics, and is characterized by acute interstitial renal inflammation with resolution after withdrawal of offending agent. |
A 25-year-old man presents with blood in his urine. After taking a complete history, you learn that his father had died of kidney failure in his late 30s and that the patient is very concerned about having the same fate. Physical examination reveals a blood pressure of 170/110 mm Hg and bilateral, palpable renal masses. A murmur is heard on the chest examination that is consistent with a mitral valve prolapse. You order an abdominal CT to confirm the diagnosis.
Adult and Infantile Polycystic Kidney Disease

| Etiology | APKD: **Autosomal dominant**; 90% resulting from mutation of **APKD1 gene** on chr 16
| IPKD: **Autosomal recessive** |
| --- | --- |
| Pathology | APKD: Replacement of renal parenchyma bilaterally with multiple, large, variably sized cysts
| IPKD: Closed, small, homogenous cysts that are not in continuity with the collecting system |
| Clinical Manifestations | APKD: **Hypertension, hematuria, and palpable renal masses**; CT shows multiple cysts in both kidneys; associated with secondary polycythemia, polycystic liver disease, **berry aneurysms**, and mitral valve prolapse
| IPKD: CT shows multiple cysts at birth |
| Treatment and Prognosis | APKD: No therapy can prevent renal failure, although HTN treatment with ACE inhibitors and low-protein diet may slow progression of ESRD
| IPKD: Results in death shortly after birth |
| Notes | |
A 40-year-old woman presents to the emergency room complaining of colicky abdominal pain and flank pain radiating toward her groin. After taking a complete history, you learn that she has seen large amounts of blood in her urine in recent weeks and that she has a history of recurrent UTIs. You order a plain abdominal film and find that there is a large staghorn calculus. As you prepare to admit the patient to the hospital, you call the urology service to schedule a percutaneous nephrolithotomy.
Urolithiasis (Kidney Stones)

| Etiology | Calcium oxalate and/or calcium phosphate stones (80%–85%): Hypercalcemic conditions (eg, hyperparathyroidism, vitamin D intoxication, sarcoidosis)
| | Ammonium magnesium phosphate (struvite) stones (10%): Urease-positive bacteria (eg, *Proteus vulgaris*)
| | Uric acid stones (5%): Diseases with increased cell proliferation and turnover (eg, leukemia, myeloproliferative disorders) or hyperuricemia
| | Cystine stones (< 5%): Cystinuria (hereditary impaired reabsorption of cystine) |

| Pathology | Kidney: Presence of stone within renal calyces, pelvis, or bladder
| | Urolithiasis can also result in other pathologic conditions such as renal colic (painful ureter distention), hydronephrosis, and pyelonephritis |

| Clinical Manifestations | Flank pain radiating toward the groin and hematuria
| | Imaging: Calcium stones and ammonium magnesium phosphate (struvite) stones are radiopaque, uric acid and cystine stones are radiolucent
| | Complications include recurrence of stones (calcium) and increased incidence of UTIs (struvite) |

| Treatment | Hydrochlorothiazide (recurrent calcium stones)
| | Allopurinol and brisk alkaline diuresis (uric acid stones)
| | Increased fluid intake or surgical removal |

| Notes | Hydronephrosis refers to the dilation of the renal pelvis and calyces. It is caused by urinary outflow obstruction and is associated with progressive atrophy of the kidney. |

138
A 40-year-old insulin-dependent diabetic patient has not been taking his daily insulin injections for 1 week. He presents to the emergency room with deep, regular, sighing respirations, abdominal pain, vomiting, and signs of severe dehydration. You conduct serum studies, which are significant for a low blood pH, low HCO_3^-, decreased PCO_2, extreme hyperglycemia, and increased blood ketones. You immediately treat the patient with fluids and insulin to try and reverse this metabolic disturbance.
Metabolic Acidosis

Etiology

| Anion gap metabolic acidosis: Causes include renal failure (azotemia), lactic acidosis, diabetic ketoacidosis, certain toxins (methanol, paraldehyde, phenformin, cyanide, carbon monoxide, ethanol, ethylene glycol, salicylate), and INH |
| Normal anion gap metabolic acidosis: Causes include traveler’s diarrhea, acetazolamide overdose, glue sniffing, renal tubular acidosis, and hyperchloremic metabolic acidosis |

Pathophysiology

- **Primary disturbance:** Decrease in HCO_3^- concentration
- **Compensatory response:** Decrease in PCO_2 results in vascular bed dilatation and decreased cardiac contractility (resistant to catecholamines) and can lead to shock

Clinical Manifestations

- **Hyperventilation** or Kussmaul breathing (deep, sighing respirations); other specific signs and symptoms depend on cause of metabolic acidosis
- **Lab findings:** Decreased pH, decreased PCO_2, decreased HCO_3^-

Treatment

- Treat with bicarbonate if pH < 7.1 and treat underlying condition

Notes

- **Anion gap calculation:** Anion gap = $\text{Na}^+ - (\text{Cl}^- + \text{HCO}_3^-)$. Anion gap is normally 6–12 mEq/L and is increased if unmeasured anion replaces HCO_3^-.

- **Compensation calculation (Winter’s formula):** Decrease in $\text{PCO}_2 = 1.5 (\text{HCO}_3^-) + 8 \pm 2$
A 50-year-old man presents to the emergency department with increased dizziness and weakness. After taking a history, you learn that he has been accidentally taking twice the amount of a prescribed diuretic. On physical examination, you notice that he has sunken eyes, poor skin turgor, hyporeflexia in all reflexes, and orthostatic hypotension. Laboratory studies show an arterial pH of 7.56 and an arterial P\textsubscript{CO\textsubscript{2}} of 45. Serum potassium and chloride are decreased. No other abnormalities are noted. You immediately begin to administer IV fluids and you suspect that this will reverse his metabolic abnormality.
Metabolic Alkalosis

Etiology

- **Saline-responsive metabolic alkalosis:** Caused by extracellular volume contraction caused by vomiting, diuretics, or posthypercapnia alkalosis

- **Saline-resistant metabolic alkalosis:** Caused by mineralocorticoid excess (Conn syndrome, renovascular disease, Cushing disease) or alkali administration with decreased GFR (eg, antacid administration) or severe hypokalemia

Pathophysiology

- **Primary disturbance:** Increase in \(\text{HCO}_3^- \) concentration

- **Compensatory response:** Increase in \(\text{P} \text{CO}_2 \); hypoventilation causes \(\text{PCO}_2 \) to increase in order to increase bicarbonate concentration

Metabolic alkalosis is generally associated with hypokalemia that acts to worsen the metabolic alkalosis by increasing bicarbonate absorption in the proximal tubule and hydrogen ion secretion in the distal tubule

Clinical Manifestations

May present with signs of dehydration (sunken eyes, poor skin turgor, lethargy, hypotension) and muscle weakness (because of hypokalemia); can also cause decreased cerebral blood flow and cardiac arrhythmias

Lab findings: Increased pH, increased \(\text{P} \text{CO}_2 \), increased \(\text{HCO}_3^- \), hypokalemia

Treatment

- **Saline-responsive:** Fluid replacement

- **Saline-resistant:** Treat underlying cause of mineralocorticoid excess; replete potassium

Notes

Compensation: \(\text{P} \text{CO}_2 \) increases 0.7 mm Hg for every 1 mEq/L \(\text{HCO}_3^- \) increase
A 30-year-old male heroin addict presents to the emergency room with shallow, deep breathing as well as nausea, vomiting, and constipation. On physical examination, the patient is confused and somnolent. Myoclonus with asterixis is apparent, as are pinpoint pupils. Track marks are found on both arms. Laboratory studies indicate an arterial pH of 7.30 and an arterial PCO₂ of 55. To reverse the drug overdose and thereby relieve the metabolic disturbance, you decide to administer 0.4 mg of naloxone IV.
Respiratory Acidosis

Etiology
Caused by acute lung disease (ARDS, airway obstruction), chronic lung disease (COPD), CNS depression (opioids, sedatives, narcotics), or weak respiratory muscles (ALS, kyphoscoliosis, MS, polio)

Pathophysiology
Primary disturbance: Increase in PCO_2 (hypercapnia) owing to decreased alveolar ventilation
Compensatory response: Increase in HCO_3^- caused by increased renal HCO_3^- reabsorption as stimulated by low pH and high PCO_2

Clinical Manifestations
Hypoventilation; somnolence; confusion; myoclonus with asterixis; signs of increased intracranial pressure (eg, papilledema, pseudotumor cerebri)

Lab findings: Decreased pH, increased PCO_2, increased HCO_3^-

Treatment
Treat underlying condition of acute respiratory acidosis
No treatment necessary for chronic respiratory acidosis

Notes
Acute compensation: 1 mEq/L HCO_3^- increase for every 10 mm Hg PCO_2 increase
Chronic compensation: 3.5 mEq/L HCO_3^- increase for every 10 mm Hg PCO_2 increase
A 30-year-old woman just learns that her brother was in a serious car accident, but is currently in stable condition. She begins to hyperventilate and starts complaining of feeling light-headed and having tingling in her hands and feet. Realizing that she is in danger of experiencing a metabolic disturbance, you hand her a paper bag and ask her to breathe into it.
Respiratory Alkalosis

| Etiology | Acute respiratory alkalosis: Caused by **hyperventilation**, early phase of salicylate overdose, pneumonia, sepsis, pregnancy, pulmonary edema, pulmonary embolism, or cirrhosis
<table>
<thead>
<tr>
<th></th>
<th>Chronic respiratory alkalosis: Caused by high altitude or pregnancy</th>
</tr>
</thead>
</table>
| Pathophysiology | **Primary disturbance:** Decrease in P_{CO_2}
| | **Compensatory response:** Decrease in HCO_3^- because of increased renal HCO_3^- secretion |
| Clinical Manifestations | Symptoms in acute respiratory alkalosis are related to decreased cerebral blood flow (light-headedness, anxiety, paresthesias, numbness about the mouth, tingling in distal extremities, **hyperventilation**); may also cause cardiac arrhythmias
| | **Lab findings:** Increased pH, decreased P_{CO_2}, decreased HCO_3^- |
| Treatment | Acute hyperventilation syndrome from anxiety can be treated by breathing into paper bag to increase P_{CO_2}; otherwise, treat underlying cause (ie, sepsis or pneumonia) |
| Notes | **Acute compensation:** 2 mEq/L HCO_3^- decrease for every 1 mm Hg P_{CO_2} decrease
| | **Chronic compensation:** 5 mEq/L HCO_3^- decrease for every 10 mm Hg P_{CO_2} decrease |
A 70-year-old man presents to the emergency room because he is unable to urinate. After taking a detailed history, you learn that he has had increasing urinary hesitancy and decreased force of his urine stream for several months. He also complains of a sensation of incomplete bladder emptying. On rectal examination, you find a smooth, firm, elastic enlargement of the prostate. Examination of the lower abdomen reveals signs of a distended bladder. You order laboratory studies that show increased urinary sodium excretion and an elevated BUN and creatinine. You determine that the patient requires prompt urethral catheterization to help reverse his renal failure.
Acute Renal Failure (Prerenal, Intrarenal, and Postrenal Azotemia)

Etiology

Prerenal: Caused by decreased effective arterial volume (i.e., CHF, hypovolemia, systemic vasodilation [sepsis]), or renal vasoconstriction (NSAIDs, ACE inhibitors, RAS)

Intrarenal: Caused by acute tubular necrosis, acute interstitial nephritis, glomerulonephritis, and thrombotic microangiopathy

Postrenal: Caused by kidney stones, BPH, neurogenic bladder, and neoplasia

Pathology and Pathophysiology

Prerenal: Renal hypoperfusion leads to decreased GFR, resulting in sodium and water retention

Intrarenal: Characterized by patchy tubular necrosis, which leads to tubule obstruction and fluid backflow across the necrotic tubule and a resulting decrease in GFR

Postrenal: Only develops with bilateral outflow obstruction

Clinical Manifestations

Oliguria; azotemia; hyperkalemia

Lab findings:
1. **Prerenal:** urinary Na⁺ < 10, urine osmolality > 500, Fe Na⁺ < 1%, BUN/Cr > 20;
2. **Intrarenal:** urine osmolality < 350, Fe Na⁺ > 2%, urinary epithelial/granular casts;
3. **Postrenal:** urinary Na⁺ > 40, Fe Na⁺ > 4%; BUN/Cr > 20

Treatment

Prerenal and intrarenal: Fluid and electrolyte management; dialysis if necessary

Postrenal: Treatment of obstruction

Notes

Chronic renal failure develops gradually and shows compensation that results in normal urine osmolality and volume until ESRD occurs. Common causes include hypertension and diabetes and clinical manifestations include azotemia, anemia, and renal osteodystrophy.
A 60-year-old man presents to the clinic with cola-colored urine and flank pain. After taking a careful history, you find that the man has had a low-grade fever and has lost 10 pounds over the past month. He is a chronic smoker (a pack of cigarettes a day for the last 30 years). On physical examination, you feel a large mass in the left kidney. Laboratory findings demonstrate secondary polycythemia. You suspect that an abdominal CT scan will show a solid renal mass and possible metastasis to regional lymph nodes.
Renal Cell Carcinoma

| Etiology and Epidemiology | Associated with **von Hippel-Lindau disease**, deletion on chr 3 and cigarette **smoking**
Most common among **men** (2:1 male:female ratio) in sixth decade of life (usually age 50–70) |
|---------------------------|--|
| Pathology | **Kidney**: Characterized by **polygonal clear cells** (demarcated only by cell membranes, nuclei pushed to the sides), which are derived from the tubular epithelium
Invades IVC and spreads hematogenously to the lungs, bones, and other sites |
| Clinical Manifestations | Manifests with **hematuria, palpable mass, flank pain, long-standing fever**, and weight loss; associated with **paraneoplastic syndromes** (ectopic EPO, ACTH, PTHrP, prolactin, gonadotropins, renin)
Imaging: Solid renal mass evident on CT
Lab findings: Secondary polycythemia owing to increased erythropoietin production |
| Treatment | Radical nephrectomy; chemotherapy/radiation if invasive/distant disease |
| Notes | Renal cell carcinoma is the most common renal malignancy. |
A 60-year-old man presents to the clinic with painless hematuria. A full history reveals that he worked in a factory that used aniline dyes for 20 years before retiring 10 years ago and that he also has smoked a pack of cigarettes per day for the last 30 years. You order serum and urine studies that demonstrate hematuria, exfoliated normal and abnormal urothelial cells in the urine, and anemia. You fear that this patient may be suffering from a neoplastic condition.
Transitional Cell Carcinoma

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Associated with smoking, exposure to aniline dyes, cyclophosphamide treatment, and phenacetin abuse</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Varies from flat to papillary and from noninvasive to invasive; can occur anywhere in urinary tract system (renal calyces, renal pelvis, ureters, bladder) and may spread by local extension to adjacent tissue
Microscopic: **Multiple grades of carcinoma**; histopathology varies from well-differentiated tumor cells resembling normal transitional cells to anaplastic tumor cells with giant cells and multiple mitoses |
| **Clinical Manifestations** | Presents with **painless hematuria**; bladder transitional cell carcinoma may also present with **irritative voiding symptoms**, palpable mass on bimanual examination, hepatomegaly, or supraclavicular lymphadenopathy (if metastasized) |
| **Treatment and Prognosis** | Chemotherapy, radiotherapy, and transurethral resection for bladder cancer (often recurs after removal)
Prognosis is dependent on stage and grade |
| **Notes** | **Squamous cell carcinoma** of the bladder accounts for 3%–7% of bladder cancers in the United States and is associated with schistosomiasis and other causes of chronic bladder infection. |
A 3-year-old boy is brought to the emergency room by his mother because he is experiencing abdominal pain after accidentally falling onto a toy truck that hit his abdomen. On physical examination, you can feel a huge, palpable flank mass on his left side. Urinalysis reveals microscopic hematuria. When a CT scan reveals a large mass originating from the kidney, you begin to suspect that this child’s condition is related to a gene deletion on chromosome 11.
Wilms Tumor

| **Etiology and Epidemiology** | Caused by deletion of **WT-1 gene** (tumor suppressor) on short arm of **chr 11**
Most commonly seen in **early childhood** (ages 2–4) |
|-------------------------------|--|
| **Pathology** | *Gross:* Large, solitary, **well-circumscribed renal mass;** originates from primitive metanephric tissue
Microscopic: Immature stroma with primitive tubules and glomeruli; presence of mesenchymal elements (eg, bone, cartilage, connective tissue) |
| **Clinical Manifestations** | Presents as a huge, **palpable flank mass** in a **young child;** may also initially present as pain in abdomen after some traumatic incident, intestinal obstruction, or hypertension; can be associated with unilateral muscular hypertrophy (hemi hypertrophy)
Lab findings: **Microscopic hematuria** |
| **Treatment and Prognosis** | Surgery to remove tumor; radiotherapy and chemotherapy with actinomycin D and vincristine
There is an excellent survival rate |
| **Notes** | Wilms tumor can be associated with the **WAGR complex** (Wilms tumor, **aniridia** [absence of iris], genitourinary malformation, mental-motor retardation). |
Disorders of the Pituitary Gland

Disorders of the Anterior Pituitary
- Pituitary Cachexia
- Prolactinoma
- Acromegaly and Gigantism
- Craniopharyngioma

Disorders of the Posterior Pituitary
- SIADH
- Diabetes Insipidus
Hormones of the Pituitary Gland

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Site of Release</th>
<th>Action</th>
<th>Stimulators</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>Anterior lobe</td>
<td>Stimulates release of TH from thyroid</td>
<td>TRH</td>
<td>TH</td>
</tr>
<tr>
<td>LH</td>
<td>Anterior lobe</td>
<td>Promotes testosterone and estrogen synthesis; stimulates ovulation and luteal development</td>
<td>GnRH; estrogen</td>
<td>Testosterone; progesterone; estrogen</td>
</tr>
<tr>
<td>FSH</td>
<td>Anterior lobe</td>
<td>Maintains spermatogenesis; stimulates estrogen synthesis & follicle development</td>
<td>GnRH; estrogen</td>
<td>Inhibin; progesterone; estrogen</td>
</tr>
<tr>
<td>ACTH</td>
<td>Anterior lobe</td>
<td>Stimulates steroid hormone synthesis in adrenal cortex</td>
<td>CRF</td>
<td>Cortisol</td>
</tr>
<tr>
<td>MSH</td>
<td>Anterior lobe</td>
<td>Stimulates melanin production in melanocytes</td>
<td>CRF</td>
<td>Cortisol</td>
</tr>
<tr>
<td>GH</td>
<td>Anterior lobe</td>
<td>Stimulates somatomedin production, which increases organ size</td>
<td>GHRH</td>
<td>Somatostatin; somatomedins; GH</td>
</tr>
<tr>
<td>Prolactin</td>
<td>Anterior lobe</td>
<td>Stimulates milk production and breast development; inhibits ovulation</td>
<td>TRH</td>
<td>Dopamine; prolactin</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>Posterior lobe</td>
<td>Causes milk ejection from breast; causes contraction of uterus</td>
<td>Suckling; dilation of cervix; orgasm</td>
<td>N/A</td>
</tr>
<tr>
<td>ADH</td>
<td>Posterior lobe</td>
<td>Increases water uptake in collecting duct of nephron; vasoconstrictor</td>
<td>Hyperosmolarity; volume contraction</td>
<td>Hypo-osmolarity; ethanol</td>
</tr>
</tbody>
</table>
Thyroid Gland

THYROID HORMONES: T₃ AND T₄

Biosynthesis
- Thyroglobulin (TG) is synthesized by the thyroid follicular cell and secreted into the colloid space
- Iodine is added to tyrosine residues on TG to form MIT and DIT
- T₃ is formed by oxidative coupling of MIT and DIT; T₄ = DIT + DIT

Thyroid Hormones in Circulation
- T₃ and T₄ circulate bound to thyroxine-binding globulin; only free T₃ and T₄ are biologically active
- T₃ is more active than T₄, thus T₄ is largely converted into T₃ in peripheral tissues

Regulation
- TRH release (hypothalamus) → TSH release (ant pituitary) → T₃ and T₄ release and glandular hyperplasia
- Negative feedback system: High levels of thyroid hormones suppress TSH and TRH release

Functions of Thyroid Hormones
- Regulates metabolic rate; required for normal functioning of growth, immune system, CNS, and heart

HYPERTHYROIDISM
- Symptoms: Weight loss, tachycardia, tremor, sweating, irritability, menstrual abnormalities
- Lab Findings: Increased T₃ and T₄, decreased TSH (pituitary hyperfunction: increased TSH)

HYPOTHYROIDISM
- Symptoms: Weight gain, hair loss, delayed deep tendon reflexes, cold intolerance, menorrhagia
- Lab Findings: Decreased T₃ and T₄, increased TSH (pituitary hypofunction: decreased TSH)
Disorders of the Parathyroid Gland

Hyperparathyroid Disorders
- Primary Hyperparathyroidism
- Secondary Hyperparathyroidism

Hypoparathyroid Disorders
- Hypoparathyroidism
- Pseudohypoparathyroidism
Parathyroid Gland

PARATHYROID HORMONE (PTH)

Biosynthesis
- Secreted by the chief cells of the parathyroid gland

Mode of Action
- PTH binds PTH receptor → activation of guanyl nucleotide regulatory protein → activation of adenylate cyclase → increased cAMP production

Regulation
- Increased serum calcium and increased 1,25-(OH)$_2$D$_3$ levels → decreased PTH secretion
- Decreased serum calcium → increased PTH secretion

Function: Overall effect is to increase serum calcium and decrease serum phosphate levels
- Effects on bone:
 → Promotes osteoclastic activity
 → Increases rate of skeletal remodeling
- Effects on kidney:
 → Promotes calcium reabsorption in the distal tubule of the nephron
 → Increases phosphate excretion
 → Increases the formation of 1,25-(OH)$_2$D$_3$ (activated vitamin D)
- Effects on intestine:
 → Increased 1,25-(OH)$_2$D$_3$ results in increased intestinal calcium and phosphate absorption.
Disorders of the Adrenal Gland

Disorders of the Adrenal Cortex
- Primary Hyperaldosteronism
- Cushing Syndrome
- Primary Adrenocortical Insufficiency
- Congenital Adrenal Hyperplasias

Disorders of the Adrenal Medulla
- Pheochromocytoma
Adrenal Gland

Adrenal Cortex Histology (3 layers)
- **Zona glomerulosa**: Outermost layer; oval clusters of cells with bright nuclei
- **Zona fasciculata**: Middle layer; radially arranged cords of cells with pale cytoplasm
- **Zona reticularis**: Innermost layer; branching cords of cells with darker cytoplasm

Adrenal Medulla Histology
- Clusters of chromaffin cells (cells with large nuclei and basophilic cytoplasm)

Hormones of the Adrenal Gland

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Site of Release</th>
<th>Action</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone</td>
<td>Zona glomerulosa</td>
<td>Increases renal Na(^+) reabsorption; increases renal K(^+) and H(^+) secretion</td>
<td>Stimulators: Angiotensin II, hyperkalemia, ACTH</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Zona fasciculata</td>
<td>Stimulates gluconeogenesis; immunosuppressant; anti-inflammatory; increases GFR; inhibits bone formation</td>
<td>Stimulator: ACTH, Inhibitor: Cortisol</td>
</tr>
<tr>
<td>Androgens</td>
<td>Zona reticularis</td>
<td>Women: Pubic and axillary hair growth
Men: Same as testosterone</td>
<td>Stimulator: ACTH, Inhibitor: Cortisol</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Medulla</td>
<td>Relaxation of vascular smooth muscle in skeletal muscle, smooth muscle in GI tract and bladder, and of bronchioles</td>
<td>Stimulator: Acetylcholine from SNS</td>
</tr>
</tbody>
</table>
Disorders of the Endocrine Pancreas

- Diabetes Mellitus
- Zollinger-Ellison Syndrome
Pancreas

Endocrine Pancreas Histology
- *Islets of Langerhans:* Small, pale cells arranged in clusters among exocrine cells; composed of α, β, and γ cells

Exocrine Pancreas Histology
- *Acinar cells:* Triangular-shaped cells with apical secretory granules that surround central duct lumen
- *Ductal cells:* Line pancreatic ductal system

Secretions of the Pancreas

<table>
<thead>
<tr>
<th>Substance</th>
<th>Site of Synthesis</th>
<th>Action</th>
<th>Stimulators of Secretion</th>
<th>Inhibitors of Secretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>Islet β cells</td>
<td>Decreases blood glucose levels</td>
<td>High blood glucose; cortisol; glucagon; GH</td>
<td>Somatostatin; low-blood glucose; fasting</td>
</tr>
<tr>
<td>Glucagon</td>
<td>Islet α cells</td>
<td>Increases blood glucose levels</td>
<td>Decreased blood glucose; CCK; fasting</td>
<td>Insulin; somatostatin</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>Islet γ cells</td>
<td>Inhibits gastrin, insulin, and glucagon secretion</td>
<td>Glucose; amino acids; fatty acids</td>
<td>Insulin; somatostatin</td>
</tr>
<tr>
<td>α-Amylase</td>
<td>Acinar cells</td>
<td>Starch digestion</td>
<td>CCK; acetylcholine</td>
<td>Somatostatin</td>
</tr>
<tr>
<td>Lipase; colipase</td>
<td>Acinar cells</td>
<td>Fat digestion</td>
<td>CCK; acetylcholine</td>
<td>Somatostatin</td>
</tr>
<tr>
<td>Trypsin; chymotrypsin</td>
<td>Acinar cells</td>
<td>Protein digestion</td>
<td>CCK; acetylcholine</td>
<td>Somatostatin</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>Ductal cells</td>
<td>Neutralizes acidic chyme</td>
<td>Secretin</td>
<td>Somatostatin</td>
</tr>
</tbody>
</table>
A 28-year-old woman presents to your clinic complaining of amenorrhea and fatigue over the past year. A pregnancy test is negative; however, she tells you that she has an 8-month-old child, whose birth was complicated by severe hemorrhage. Further evaluation reveals loss of pubic hair, delayed deep tendon reflexes, and a blood pressure of 90/50. When blood tests reveal decreased levels of FSH, LH, TSH, ACTH, and GH, you inform her that she will have to be on hormone replacement therapy for the rest of her life.
Pituitary Cachexia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by pituitary adenomas, Sheehan syndrome (ischemic necrosis of anterior pituitary following postpartum hemorrhage), pituitary surgery, pituitary radiation, or pituitary injury</th>
</tr>
</thead>
</table>
| Pathology | **Adenoma**: Circumscribed lesion composed of similar, polygonal cells
Sheehan syndrome: Early hemorrhagic lesion in anterior pituitary that resolves into small fibrous band later |
| Clinical Manifestations | **Generalized panhypopituitarism** manifesting as hypothyroidism (decreased TSH), hypogonadism and infertility (decreased LH and FSH), hypocortisolism (decreased ACTH), decreased prolactin, and decreased GH. If caused by adenoma, may have **bitemporal hemianopsia** (loss of lateral fields of vision) owing to compression of optic chiasm.
Lab findings: Hypoglycemia; hyponatremia; decreased estrogen, testosterone, and progesterones; decreased cortisol; decreased TH |
| Treatment | Hormone replacement; surgical removal of adenoma |
| Notes | Pituitary adenomas can also cause hyperpituitarism and may be associated with MEN type 1 syndrome. |
A 32-year-old woman presents to your office complaining of a milky discharge from both her nipples. Upon further questioning, you discover that her menstrual period has become extremely irregular and that her last menstruation was over 7 months ago. The laboratory reports a negative pregnancy test; however, this patient does have increased prolactin levels and decreased LH and FSH levels. You decide to send this patient for an MRI of her brain.
Prolactinoma

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by pituitary lactotroph adenoma (most common pituitary tumor)</th>
</tr>
</thead>
</table>
| Pathology and Pathophysiology | **Pituitary adenoma:** Multiple **chromophobes cells** with secretory granules containing prolactin
Pathophysiology: Hyperprolactinemia results in decreased LH and FSH levels via feedback inhibition |
| Clinical Manifestations | **Amenorrhea** (women) or **impotence** (men); infertility; **galactorrhea**
Bitemporal hemianopsia or other visual disturbances owing to possible compression of optic chiasm
Lab findings: Decreased LH and FSH, increased prolactin levels |
| Treatment | Bromocriptine (dopamine analog to suppress prolactin secretion)
Surgery or radiation to remove adenoma |
| Notes | Hyperprolactinemia can also be caused by estrogen therapy, pharmacologic agents that interfere with dopamine secretion (methyl-dopa, reserpine), hypothalamic lesions, or renal insufficiency. |
A 47-year-old man presents to your office complaining of occasional loss of vision in his lateral visual fields. Upon directed history, you learn that he has had to buy larger gloves and shoes and that he has gained 25 pounds over the past 3 months. Laboratory tests reveal hyperglycemia and increased GH levels. You tell the patient that he may need surgery to correct his condition and you refer him to an endocrinologist.
Acromegaly and Gigantism

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by pituitary somatotropic adenoma</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Pituitary adenoma:** Multiple **acidophilic cells** with secretory granules containing GH
Pathophysiology: Increased GH results in increased insulin-like growth factor secretion from liver |
| **Clinical Manifestations** | **Gigantism:** Manifests in children as **tall stature** (adenoma appears before epiphyseal closure)
Acromegaly: Manifests in adults (adenoma appears after epiphyseal closure) as **enlargement of hands, feet, skull, and mandible with weight gain; insulin resistance** resulting in hyperglycemia; hypertension; **cardiomegaly** and cardiac failure
May also see **bitemporal hemianopsia** or other visual disturbances owing to possible compression of optic chiasm by adenoma |
| **Treatment** | Octreotide (somatostatin analog serves to decrease GH release by feedback inhibition); surgical removal of adenoma |
| **Notes** | |
An 8-year-old girl presents to your office complaining of “eye troubles.” Physical examination reveals deficits in her lateral visual fields and you also note that she is small in stature for her age. Head radiographs reveal a calcified lesion in the sella turcica. You inform the girl and her parents that she will need surgery to treat this condition, which is caused by the remnants of an embryologic precursor structure.
Craniopharyngioma

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Derived from remnants of Rathke pouch (embryologic precursor of anterior pituitary) Occurs most commonly during childhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Pituitary craniopharyngioma: Often cystic with calcification; cords of stratified squamous or columnar epithelium with keratin formation</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | **Bitemporal hemianopsia** or other visual disturbances owing to possible compression of optic chiasm; can result in growth retardation, diabetes insipidus, or other **pituitary deficiencies**
Imaging: Radiographs can detect **calcified lesion** in brain |
| **Treatment** | Surgical removal of adenoma |
| **Notes** | 155 |
A 65-year-old man is brought to the emergency department by his daughter because of confusion. He was recently diagnosed with small-cell bronchogenic carcinoma and will be beginning chemotherapy shortly. Laboratory tests reveal significantly decreased serum sodium levels, decreased serum osmolality, and increased urine osmolality. As you admit him to the hospital, you suspect that this patient’s condition is directly related to his lung cancer.
Syndrome of Inappropriate ADH (SIADH)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Causes include pulmonary disorders (COPD, pneumonia), intracranial pathology (trauma, hemorrhage, stroke), pharmacologic agents (antipsychotics, chemotherapy), or pain; may also be caused by ectopic ADH production by small-cell bronchogenic carcinoma and other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Increased ADH secretion results in water retention in the collecting duct of the nephron. Water retention leads to dilution of serum electrolytes, especially sodium, and subsequently decreased serum levels of electrolytes and serum osmolality.</td>
</tr>
</tbody>
</table>
| Clinical Manifestations | **Fatigue and confusion** caused by decreased serum sodium; euvolemia
Lab findings: **Hyponatremia, decreased serum osmolality,** increased urine osmolality |
| Treatment | Fluid restriction; demeclocycline; hypertonic saline if hyponatremia severe |
| Notes | |
A 42-year-old woman presents to your office complaining of headaches. After taking a full history, you learn that she has been extremely thirsty lately and that she has been urinating frequently. A neurologic examination is unremarkable, but laboratory tests reveal increased serum osmolality and hypernatremia. You decide that further endocrinologic evaluation will be necessary to determine the etiology of her disorder.
Diabetes Insipidus

| Etiology | Central diabetes insipidus: Deficiency of ADH secretion from the posterior pituitary; causes include hypothalamus damage (neoplastic or traumatic), histiocytosis, and idiopathic
Nephrogenic diabetes insipidus: Defective ADH receptors in the kidney; causes include familial deficiency, drugs (lithium, demeclocycline), hypercalcemia, or tubulointerstitial kidney disease |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>A deficiency in ADH or the inability of the kidney to sense ADH results in the inability to retain water and, thus, increased urine output. Lack of water retention leads to an increase in serum osmolality, which stimulates thirst receptors in the brain and the posterior pituitary to release more ADH.</td>
</tr>
</tbody>
</table>
| Clinical Manifestations | Polydipsia and polyuria; seizures; headaches; signs of dehydration
Lab findings: Increased serum osmolality, hypernatremia, decreased urinary specific gravity |
| Treatment | Synthetic vasopressin for central diabetes insipidus
Low-sodium diet and thiazide diuretic for nephrogenic diabetes insipidus |
| Notes | |
A 37-year-old woman presents to your office complaining of fatigue and thinning of her hair. While discussing her health further, you find that she has gained 20 pounds over the past 6 months with no change in diet or exercise. During physical examination, you note that she has a mildly enlarged thyroid gland and dry skin. You decide to send her for a blood draw to check her thyroid function tests.
Cretinism and Myxedema

Etiology and Epidemiology

Cretinism: Hypothyroidism occurring during infancy; causes of cretinism include iodine deficiency, congenital deformity of the thyroid, and deficiency of enzymes that synthesize thyroid hormones.

Myxedema: Hypothyroidism in adults; most commonly seen in middle-aged women; causes of myxedema include idiopathic, iodine deficiency, and surgical or radiation destruction of the thyroid.

Pathology

Thyroid: Moderate enlargement of the gland

Soft tissues: Accumulation of glycosaminoglycans and hyaluronic acid.

Clinical Manifestations

Cretinism: Hypothyroidism; impaired musculoskeletal and nervous system development manifested as short stature, distended abdomen, and mental retardation; goiter; edematous face; large tongue.

Myxedema: Hypothyroidism; goiter; thickening of facial features; periorbital edema; pale skin.

Treatment

Synthetic levothyroxine.

Notes

Although common in the past, cretinism has become less frequent owing to widespread addition of iodine to foods and screening of newborns for hypothyroidism.
A 42-year-old woman presents to your office complaining of fatigue, thinning hair, and a weight gain of 15 pounds over the last month despite no change in eating habits. During her physical examination, you note that she has a pulse of 52, delayed deep tendon reflexes, a puffy face and eyelids, and an enlarged thyroid gland. Laboratory tests revealing antibodies against thyroglobulin and TSH receptors confirm your suspected diagnosis.
Hashimoto Thyroiditis

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Autoimmune disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence is more common among middle-aged women, in patients with a family history of Hashimoto or other autoimmune diseases, and in HLA-DR5- and HLA-B5-positive individuals</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross: Symmetrical enlargement of the thyroid forming a goiter</td>
<td></td>
</tr>
<tr>
<td>Microscopic: Lymphocytic and plasma cell infiltrate of the thyroid gland with germinal center formation; atrophic thyroid follicles; Hurthle cells (epithelial cells with eosinophilic cytoplasm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient hyperthyroidism, followed by hypothyroidism</td>
<td></td>
</tr>
<tr>
<td>Lab findings: Autoantibodies against thyroglobulin, thyroid peroxidase, TSH receptors, and/or iodine receptors</td>
<td></td>
</tr>
</tbody>
</table>

| **Treatment** | Synthetic levothyroxine |

| **Notes** | |
A 35-year-old woman presents to your office complaining of palpitations and intolerance to heat. Upon further questioning, you learn that she has developed an increased appetite and that her husband has told her that she is quite irritable lately. During her physical examination, you note that she has exophthalmos, moist skin, a pulse of 110, and a diffusely enlarged thyroid gland. You immediately order a panel of thyroid function tests to confirm your suspected diagnosis.
Graves Disease

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Caused by formation of thyroid-stimulating immunoglobulin and thyroid growth immunoglobulin. Seen most commonly in women between the ages of 20 and 40 and in patients who are HLA-DR3 and HLA-B8 positive.</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology:* Thyroid-stimulating immunoglobulin binds thyroid follicle TSH receptors and stimulates TH production. Thyroid growth immunoglobulin also stimulates glandular hyperplasia and enlargement.

Gross: Symmetrical enlargement of the thyroid gland

Microscopic: Hypercellularity; follicles are small and wedged together with little colloid; interstitium may have a lymphocytic infiltrate |
Clinical Manifestations	Hyperthyroidism symptoms; exophthalmos (protrusion of the eyes); thickened edematous nodules on lower extremities
Treatment	Radioactive iodine or antithyroid drugs (propylthiouracil blocks TH synthesis); thyroidectomy; β-blockers (propranolol) as needed to control tachycardia
Notes	

160
A 28-year-old woman presents to your office complaining of fever and anterior neck pain. She tells you that she has been suffering from a flu-like illness for the past week and a half. During her physical examination, you note that she has lid lag, a pulse of 100, and an extremely tender thyroid gland. You order serum studies looking specifically at thyroid hormone levels, which show marked elevation. Based on these results and your physical examination, you suspect that she will recover spontaneously within the next few weeks and do not recommend any further treatment.
Subacute (DeQuervain, Granulomatous) Thyroiditis

| Etiology and Epidemiology | Associated with **viral infection** (especially mumps or *Coxsackievirus*)
<table>
<thead>
<tr>
<th></th>
<th>Most common in women between the ages of 30 and 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Gross: Mild enlargement of the thyroid</td>
</tr>
<tr>
<td></td>
<td>Microscopic: Granulomatous inflammation; destruction of thyroid follicles</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Flu-like illness associated with transient hyperthyroidism, fever, and a tender thyroid</td>
</tr>
<tr>
<td>Treatment and Prognosis</td>
<td>NSAIDs; prednisone if severe</td>
</tr>
<tr>
<td></td>
<td>Self-limited illness</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
A 58-year-old woman presents to your office complaining of several little lumps in her neck. She has a history of long-standing diffuse goiters, but her history is otherwise unremarkable. Her physical examination is significant for irregular enlargement of her thyroid. You note no cervical lymphadenopathy. You decide to check her thyroid hormone and TSH levels and you order an ultrasound of the thyroid as well as a fine needle aspiration biopsy to rule out carcinoma of the thyroid.
Multinodular Goiter

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Usually develops from long-standing simple goiters, which can arise from iodine deficiency, goitrogens (eg, calcium or fluorides), or TH biosynthetic enzyme deficiency</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Asymmetrical, nodular enlargement of the thyroid
Microscopic: Individual nodules may show **colloid-rich follicles**; follicular epithelial hyperplasia; areas of hemorrhage, calcification, and fibrosis |
| **Clinical Manifestations** | **Goiter:** patients are usually **euthyroid**, but a few patients may present with hyperthyroidism; may see dysphagia or hoarseness owing to local compression of surrounding structures |
| **Treatment** | Synthetic levothyroxine (suppresses TSH levels → decreased hyperplasia) if patient is euthyroid |
| **Notes** | A goiter can be **toxic** (produces TH, thus leading to hyperthyroidism) or **nontoxic** (does not produce TH). Biopsy (FNA) should be performed for any large irregular nodules to rule out carcinoma. |
A 52-year-old man presents to your office after noticing a lump in his neck that has been slowly enlarging. He denies any symptoms of hyper- or hypothyroidism, although he does tell you that he had radiation treatment for acne when he was a child. During his physical examination, you note that he has a nontender nodule in the anterior neck as well as some cervical lymphadenopathy. You become concerned and you order a blood test to check his thyroid hormone and TSH levels, a radioactive thyroid scan, and a fine needle aspiration biopsy of both the lump in his neck as well as his enlarged cervical lymph nodes.
Carcinoma of the Thyroid

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Associated with radiation to the head/neck, or genetic predisposition to thyroid carcinoma</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Firm nodule(s) on the thyroid
Microscopic: Four histologic types:
(1) **Follicular:** small uniform **follicles** filled with colloid;
(2) **Papillary:** comprises 75%–80% of cases, papillae of cuboidal cells, **Orphan Annie nuclei,** psammoma bodies;
(3) **Medullary:** derived from **C cells,** nests of cells within **amyloid** deposits;
(4) **Anaplastic:** pleomorphic giant cells, spindle cells, small **anaplastic cells** |
| **Clinical Manifestations** | Nodule or **mass in neck**; dysphagia or hoarseness owing to local compression
Papillary: Metastasizes to **local lymph nodes**
Follicular: Metastasizes to lung and bone via **hematogenous spread**
Medullary: Secretes **calcitonin**; associated with MEN IIa and IIb |
| **Treatment and Prognosis** | **Thyroidectomy** or lobectomy; radioactive iodine treatment
Papillary has a good prognosis; anaplastic has a particularly poor prognosis |
| **Notes** | **Thyroid adenomas** are common. Microscopically, they contain uniform, colloid-filled follicles, although there are various histologic types. They are not considered premalignant and are usually nonfunctional. |
A 63-year-old woman presents to your office complaining of generalized bone pain. While discussing her health further, you discover that she is also suffering from polyuria, constipation, and muscular weakness. A bone densitometry study reveals a significant loss of cortical bone. You order laboratory studies, which reveal increased calcium levels, increased PTH levels, increased alkaline phosphatase, and decreased phosphate levels. You believe that a parathyroid biopsy will reveal polygonal chief cells and larger oxyphil cells and that a bone biopsy would reveal brown tumors.
Primary Hyperparathyroidism

Etiology
Caused by **PTH adenoma**, PTH hyperplasia, PTH carcinoma, or production of PTH-like hormone by tumors (especially squamous cell bronchogenic carcinoma)

Associated with MEN I and MEN IIa

Pathology

Parathyroid Gland: **Parathyroid adenoma:** circumscribed nodule composed of uniform, polygonal chief cells along with a few larger oxyphil cells

Bone: **Osteitis fibrosa cystica:** cystic spaces filled with fibrous tissue (**brown tumors**), owing to increased osteoclast activity

Clinical Manifestations
Bone pain owing to osteitis fibrosa cystica; **nephrocalcinosis**; peptic ulcers and other GI disturbances; weakness

Lab findings: **Hypercalcemia, increased PTH levels,** increased serum alkaline phosphatase, decreased serum phosphate

Treatment
Surgical removal of the abnormal glands if disorder is caused by adenoma

Notes
Other causes of hypercalcemia include cancer originating in or metastatic to the bone, multiple myeloma, sarcoidosis, milk alkali syndrome, Paget disease of the bone, hyperthyroidism, and vitamin D intoxication.
A 58-year-old man presents to your office for a follow-up visit regarding his chronic renal insufficiency. When he mentions that he has been having some generalized bone pain, you become concerned and send him for a blood draw. His serum studies reveal decreased calcium and increased serum phosphate levels. You decide to check his PTH levels, which you believe will be elevated, and you recommend that he take calcium and vitamin D supplements.
Secondary Hyperparathyroidism

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Most commonly caused by chronic renal failure</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | Parathyroid: Diffuse enlargement of gland caused by glandular **hyperplasia** of chief cells
Pathophysiology: Decreased 1,25-(OH)$_2$D$_3$ production owing to failing kidney \rightarrow decreased intestinal calcium absorption \rightarrow hypocalcemia (also caused by increased calcium excretion by damaged kidney) \rightarrow increased PTH |
| **Clinical Manifestations** | Diffuse osteoclastic bone disease; metastatic calcification in soft tissues
Lab findings: Hypocalcemia, increased PTH, increased serum alkaline phosphatase, increased serum phosphate |
| **Treatment** | Surgical removal of the abnormal glands if disorder is severe
Phosphate binders and vitamin D supplementation |
| **Notes** | |
A 45-year-old woman presents to your office for a follow-up visit regarding her thyroidectomy. She tells you that she has been suffering from wrist spasms. During physical examination, you notice that she has carpal spasm 2 minutes after you inflate the blood pressure cuff and that she has facial twitching when you tap her facial nerve. You decide to check her calcium, phosphate, and PTH levels, but you fear that her previous surgery may have removed more than just her thyroid.
Hypoparathyroidism

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by surgical removal of the parathyroid glands, congenital absence of the parathyroid glands (as seen in DiGeorge syndrome), radioactive iodine therapy, or idiopathic autoimmune atrophy of the parathyroids</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Mild shrinkage of gland
Microscopic: Replacement of chief cells by fibrotic tissue |
| **Clinical Manifestations** | **Symptoms of hypocalcemia:** Tetany or other signs of neuromuscular irritability, prolonged QT interval on ECG, Trouseau sign (carpal spasm 2 minutes after inflation of blood pressure cuff above systolic blood pressure), Chvostek sign (twitching of the facial muscles upon superficial tapping of the facial nerve)
Lab findings: Hypocalcemia, decreased PTH levels, increased serum phosphate levels |
| **Treatment** | Calcium and vitamin D supplementation |
| **Notes** | |
A 19-year-old mentally retarded woman presents to your office as a new patient. You immediately notice that she is extremely short and has very short metacarpals on her fourth and fifth fingers of both hands. She tells you that she has been previously diagnosed with a genetic illness. On physical examination, you notice that she has carpal spasm after you inflate the blood pressure cuff above her systolic pressure. You suspect that it will be necessary to monitor her calcium, phosphate, and PTH levels on a regular basis.
Pseudohypoparathyroidism

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal recessive disorder resulting in a defective PTH receptor</th>
</tr>
</thead>
</table>
| **Pathophysiology** | **Type 1a:** Deficiency in $G_{s-\alpha}$ leads to decreased coupling of PTH receptor to adenylate cyclase, such that activation of PTH receptor does not activate target cell
Type 1b: Regulation of $G_{s-\alpha}$ is altered such that the target cell is not activated by stimulation of the PTH receptor |
| **Clinical Manifestations** | **Symptoms of hypocalcemia:** Tetany or other signs of neuromuscular irritability, **prolonged QT interval** on ECG, **Trousseau sign** and **Chvostek sign**
Albright hereditary osteodystrophy: Short stature, mental retardation, shortened fourth and fifth metacarpal and metatarsal bones, obesity
Lab findings: **Hypocalcemia**, **decreased PTH levels**, increased serum phosphate levels |
| **Treatment** | Calcium and vitamin D supplementation |
| **Notes** | 167 |
A 37-year-old woman presents to your office for her annual checkup. Physical examination reveals a blood pressure of 160/100. Upon further questioning, she tells you that she has felt weak lately and that she seems to be urinating more frequently. Her past medical history is insignificant. Laboratory tests reveal low serum potassium levels, an increased serum bicarbonate level, an increased blood pH, and increased CO₂ levels. After checking several hormone levels, you decide to send her for an abdominal/pelvic CT scan because you suspect that her condition may originate from a small neoplasm in her abdomen.
Primary Hyperaldosteronism (Conn Syndrome)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by aldosterone-secreting adrenocortical adenoma or hyperplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Adrenal cortex: Adenoma: solitary encapsulated lesion composed of uniform cortical cells filled with lipid-containing vesicles. Hyperplasia: hyperplasia of cells of zona glomerulosa.</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | **Hypertension;** muscular weakness sometimes with tetany; headache; polyuria and polydipsia
Lab findings: **Metabolic alkalosis, decreased serum potassium, decreased renin levels, increased aldosterone levels** |
| **Treatment** | Adrenalectomy or spironolactone (potassium-sparing diuretic) |
| **Notes** | **Secondary hyperaldosteronism** is associated with any condition that results in the kidney sensing a low effective circulating volume (eg, renal ischemia, chronic renal failure, hepatic cirrhosis, CHF, or nephrotic syndrome). It is associated with increased aldosterone levels because of increased renin levels. |
A 45-year-old woman presents to your office complaining of increased urination over the past several months. Upon questioning her further, you learn that she has gained 35 pounds over the past year, bruises easily, and has grown hair on her chin. While speaking with her, you note that she has moon facies and increased fat pads on the back of her neck. Blood tests reveal hyperglycemia, increased cortisol levels, and increased serum ACTH levels. To determine the etiology of her disorder, you decide to perform a dexamethasone suppression test.
Cushing Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by hypercortisolism, which can result from iatrogenic cortisol administration, increased ACTH production by pituitary adenoma/hyperplasia (Cushing disease), adrenal cortical adenoma/carcinoma, or ectopic ACTH-secreting tumors (usually small cell bronchogenic carcinoma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Adrenal gland pathology depends on etiology: (1) Iatrogenic: adrenocortical atrophy; (2) ACTH overproduction: bilateral adrenocortical nodular hyperplasia of lipid-rich cells in zona fasciculata; (3) Adrenal adenoma: small encapsulated lesion composed of uniform zona fasciculata cells; (4) Pituitary hyperplasia or adenoma (seen in Cushing disease): collection of basophilic cells</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Truncal obesity; hypertension; moon facies; buffalo hump (fat on posterior neck); muscle wasting; hyperglycemia owing to insulin resistance; skin changes (purple abdominal striae, bruising); osteoporosis; hirsutism; mental changes; immune suppression</td>
</tr>
<tr>
<td>Lab findings:</td>
<td>Increased cortisol levels, abnormal ACTH levels (decreased in iatrogenic and adrenal adenoma, increased in pituitary adenoma and ectopic secretion of ACTH), hyperglycemia</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgical resection of pituitary/adrenal adenoma or ectopic ACTH-secreting tumors</td>
</tr>
<tr>
<td>Notes</td>
<td>The dexamethasone suppression test is used to determine the etiology of Cushing disease. Cortisol levels are decreased following high doses of dexamethasone in Cushing disease caused by pituitary adenomas, but are unchanged when caused by ectopic ACTH-secreting tumors.</td>
</tr>
</tbody>
</table>
A 47-year-old woman presents to your clinic complaining of nausea and fatigue. While speaking with her, you notice that she has hyperpigmented skin over her knuckles, knees, and elbows. Her blood pressure is 90/60 on physical examination and laboratory tests reveal hypoglycemia, hyperkalemia, and hyponatremia. You suspect that her condition may be caused by an autoimmune process and you prescribe replacement therapy of specific hormones to treat her symptoms.
Primary Adrenocortical Insufficiency (Addison Disease)

Etiology

Causes include **autoimmune destruction of the adrenal gland** (autoimmune adrenalitis), infection (TB), bilateral adrenal hemorrhage (owing to trauma, surgery, or anticoagulant therapy), amyloidosis, and neoplasms metastatic to the adrenal gland.

Pathology

Gross: Shrunken, atrophied adrenal gland

Microscopic: Few cortical cells; lymphoid infiltrate (seen in autoimmune adrenalitis)

Clinical Manifestations

Signs of decreased glucocorticoids: Weakness and fatigue; nausea and vomiting; **hyperpigmentation** of skin (owing to increased secretion of MSH, an ACTH precursor molecule)

Signs of decreased mineralocorticoids: Hypotension; hypoglycemia; hyperkalemia; hyponatremia

Treatment

Glucocorticoid and mineralocorticoid replacement

Notes

Secondary adrenocortical insufficiency can be caused by any disorder of the pituitary or hypothalamus that reduces ACTH production such as **chronic glucocorticoid therapy**, cancer, infection, or trauma. This disorder presents similarly to primary adrenocortical insufficiency but there is no hyperpigmentation owing to decreased MSH levels.

Waterhouse-Friderichsen syndrome refers to acute bilateral adrenal insufficiency usually owing to hemorrhagic necrosis of the adrenal glands, caused by DIC or meningococcemia.
A 16-year-old girl is brought to your office complaining of delayed menarche. She denies sexual activity and states that a home pregnancy test was negative. Physical examination reveals the absence of breasts, hair on her upper lip, chin, and axillary region, and hypertension. When laboratory results reveal decreased cortisol and aldosterone levels, you suspect that this girl may have a rare autosomal recessive enzyme deficiency.
Congenital Adrenal Hyperplasias

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal recessive deficiency in enzymes involved in biosynthesis of cortical steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology and Pathophysiology</td>
<td></td>
</tr>
<tr>
<td>Adrenal gland: Bilateral nodular hyperplasia of gland with lipid-depleted cortical cells</td>
<td></td>
</tr>
<tr>
<td>21β-Hydroxylase deficiency: Interferes with aldosterone and cortisol production; results in shunting of precursor molecules to form sex hormones</td>
<td></td>
</tr>
<tr>
<td>11β-Hydroxylase deficiency: Interferes with aldosterone and cortisol production; results in shunting of precursor molecules to form sex hormones</td>
<td></td>
</tr>
<tr>
<td>17α-Hydroxylase deficiency: Interferes with cortisol and sex hormone production; results in shunting of precursor molecules to form aldosterone</td>
<td></td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td></td>
</tr>
<tr>
<td>21β-Hydroxylase deficiency: Masculinization; hypotension; hyperkalemia; hyponatremia (salt wasting can lead to hypovolemia)</td>
<td></td>
</tr>
<tr>
<td>11β-Hydroxylase deficiency: Masculinization; hypertension (weak mineralocorticoid precursor activity); no salt wasting</td>
<td></td>
</tr>
<tr>
<td>17α-Hydroxylase deficiency: Hypertension; hypokalemia; no sexual maturation</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Replacement of deficiency hormones; symptomatic treatment</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

171
A 29-year-old man presents to the emergency department complaining of a crushing headache and heart palpitations. He tells you that he has had similar episodes in the past. Physical examination reveals a pulse of 140 and a BP of 200/110. A 24-hour urine collection reveals increased VMA and metanephrine levels and blood tests demonstrate increased plasma catecholamine levels. You immediately prescribe phenoxybenzamine for the patient and tell him that it is likely that he will need surgery to definitively treat his condition.
Pheochromocytoma

| **Etiology** | Most (90%) cases occur sporadically. Other cases are associated with MEN IIa, MEN IIb, neurofibromatosis, or von Hippel-Lindau disease. |
| **Pathology** | *Gross:* Variable changes in adrenal medulla; range from small, circumscribed lesions to large, hemorrhagic lesions with lobular pattern
Microscopic: Tumor composed of **nests of polygonal chromaffin cells** containing catecholamine-rich granules; giant, pleomorphic cells are sometimes seen |
| **Clinical Manifestations** | Release of epinephrine and norepinephrine from tumors results in **intermittent** attacks of hypertension, headache, palpitations, and diaphoresis
Lab findings: **Increased 24-hour urinary catecholamine and metanephrine levels,** increased plasma metanephrine levels |
| **Treatment** | Initial treatment with α-adrenergic blocking agents (phenoxybenzamine) followed by surgical resection of mass |
| **Notes** | Pheochromocytomas are associated with the **rule of 10s:** 10% are malignant, 10% bilateral, 10% familial, 10% extra-adrenal, and 10% occur in children. Pheochromocytomas can occur outside the adrenal gland and are then called paragangliomas. |
A 10-year-old girl is brought to the emergency department by her parents. She is confused, hypotensive, and breathing rapidly and deeply. As you examine her, you notice that her breath has a fruity odor. Her parents tell you that their daughter has lost some weight recently, even though her appetite has increased. She also has appeared to be drinking and urinating more than usual. When laboratory tests reveal hyperglycemia, ketonemia, and an anion-gap metabolic acidosis, you immediately begin to administer insulin along with fluid and electrolyte replacement therapy.
Diabetes Mellitus (Part 1)

Etiology and Epidemiology

Type I: Insulin deficiency arising from pancreatic β-cell destruction; caused by genetic susceptibility (HLA-DR3 or -DR4), autoimmune reactions, and/or environmental factors (Coxsackie and other viruses); occurs in **patients < 20 years old**

Type II: Peripheral tissue insulin resistance mediated by decreased insulin receptors and decreased response of β-cells to glucose; of type II DM patients, 90% have a positive family history for DM; occurs in **obese middle-aged patients**

Pathophysiology

Hyperglycemia → increased glucose excretion in urine → osmotic diuresis, leading to large volumes of urine with loss of water and electrolytes (**polyuria**) → plasma hyperosmolarity → trigger thirst receptors → **polydipsia**

Insulin deficiency → protein/fat catabolism → **weight loss** with increasing appetite

Increased fat catabolism → increased levels of free fatty acids → production of ketone bodies → **ketoacidosis** (most commonly in type I DM)

Acute Clinical Manifestations

Type I: Hyperglycemia; glycosuria; polyuria; polydipsia; **weight loss** with increased appetite; **ketoacidosis** (manifested by dehydration, deep and rapid [Kussmaul] breathing, fruity breath, anion-gap metabolic acidosis, ketonemia, and ketonuria)

Type II: Hyperglycemia; glycosuria; polyuria; skin or vaginal infections; **nonketotic hyperosmolar coma**

Notes

Maturity-onset diabetes of the young (MODY): Another form of diabetes caused by autosomal dominant genetic defects in pancreatic β-cell function
A 48-year-old obese man presents to your office complaining of generalized weakness. Upon further questioning, you learn that he has lost 7 pounds over the last 6 months despite an increased appetite. Physical examination reveals decreased sensation over his hands and feet, diminished dorsalis pedis pulses, and proliferative retinopathy. When laboratory tests reveal fasting hyperglycemia and glycosuria, you inform the patient that his condition can be effectively managed, but that he could have serious chronic complications if his condition is not tightly controlled.
Diabetes Mellitus (Part 2)

| Pathology of Pancreas | Type I: Atrophy of islets; T-lymphocytic infiltration
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type II: Amyloid replacement of islets with minor reduction of islet size</td>
</tr>
</tbody>
</table>

Pathology and Pathophysiology of Chronic Complications

Pathophysiology: Nonenzymatic glycosylation (NEG) of proteins in vessel walls and tissues lead to trapping of molecules (eg, LDL, plasma proteins) causing complications; hyperglycemia can cause an increase in intracellular sorbitol, thereby causing osmotic cell damage (especially in the lens)

Ocular complications: Cataracts; glaucoma; **proliferative retinopathy** (can cause blindness)

Accelerated atherosclerosis: Can lead to MI, gangrene, and stroke

Diabetic microangiopathy: NEG causes thickening of basement membranes in the retina, kidney, skin, and skeletal muscle; can lead to delayed wound healing with increased risk of infection

Diabetic nephropathy: Owing to NEG damage to basement membranes

Peripheral and autonomic neuropathy: Stocking-glove distribution of loss of sensation; can also have delayed motor movements, pain, and autonomic instability

| Treatment | Diet restriction; insulin replacement for type I; hypoglycemic drugs (eg, sulfonylureas) or insulin for type II; treatment of atherosclerosis with statins; ACE-inhibitors for diabetic nephropathy |

| Notes | Long-term glucose control can be assessed by the levels of glycosylated hemoglobin (HbA1C). |
A 38-year-old man presents to your office complaining of recurrent aching epigastric pain and diarrhea. The pain is generally relieved with food and antacids. Diagnostic tests confirm your suspicions that this man is suffering from peptic ulcer disease. Before you begin the patient on proton pump inhibitors to decrease gastric acid secretion, you decide to order a serum gastrin level. When laboratory tests reveal an elevated serum gastrin, you send the patient for radiologic studies to try and locate the cause of the increased serum gastrin levels.
Zollinger-Ellison Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by gastrinoma (pancreatic islet cell tumor); most gastrinomas are sporadic, but 25% are associated with MEN I</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Gastrinoma:* May arise in the pancreas or duodenum or in tissues surrounding pancreas; often malignant and metastasize to the liver but, histologically, they rarely show anaplasia
Pathophysiology: **Gastrinomas secrete gastrin** causing **acid hypersecretion**, leading to peptic ulcers and pancreatic enzyme inactivation |
| **Clinical Manifestations** | **Peptic ulcer disease** (usually in duodenum) often complicated by ulcer perforation; **diarrhea,** steatorrhea, and weight loss (caused by pancreatic enzyme inactivation)
Lab findings: **Increased gastrin levels,** **decreased gastric pH** |
| **Treatment** | Surgical removal of gastrinoma; control of gastric acid secretion with proton pump inhibitors |
| **Notes** | **Insulinoma** is a tumor of the islet cells of the pancreas that is characterized by increased secretion of insulin and increased C-peptide (molecule that is cleaved from proinsulin during insulin synthesis) levels. It is associated with the **Whipple triad** (episodic hyperinsulinemia and hypoglycemia, hypoglycemic CNS dysfunction, reversal of CNS dysfunction upon resolution of hypoglycemia). |
Disorders of the Female Reproductive System

Disorders of the Breast
- Fibrocystic Disease of the Breast
- Benign Tumors of the Breast
- Breast Carcinoma

Disorders of the Ovaries
- Ovarian Cysts
- Polycystic Ovarian Syndrome
- Ovarian Tumors of Surface Epithelium Origin
- Ovarian Tumors of Germ Cell Origin
- Ovarian Tumors of Sex Cord-Stromal Origin

Disorders of the Cervix and Uterus
- Endometritis
- Endometriosis
- Leiomyoma
- Endometrial Carcinoma
- Dysplasia, Carcinoma in Situs, and Squamous Cell Carcinoma of the Cervix

Disorders of Pregnancy
- Placental Attachment Abnormalities
- Preeclampsia and Eclampsia
- Hydatidiform Mole and Gestational Choriocarcinoma

Other Disorders
- Neoplasms of the Vagina
- Pelvic Inflammatory Disease
Female Reproductive System

Differential Features of Ovarian Masses

<table>
<thead>
<tr>
<th>Ovarian Mass</th>
<th>Years Affected</th>
<th>Menstrual Irregularity</th>
<th>Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicular cysts</td>
<td>Menstrual years</td>
<td>Anovulation</td>
<td>No</td>
</tr>
<tr>
<td>Corpus luteum cysts</td>
<td>Menstrual years</td>
<td>Delayed period</td>
<td>No</td>
</tr>
<tr>
<td>Theca-lutein cysts</td>
<td>Menstrual years</td>
<td>Amenorrhea, hCG elevation</td>
<td>No</td>
</tr>
<tr>
<td>Dysgerminoma</td>
<td>Kids, young adults</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Yolk sac tumor</td>
<td>Kids, young adults</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td>Premenstrual</td>
<td>None, hCG elevation</td>
<td>Yes</td>
</tr>
<tr>
<td>Benign teratoma</td>
<td>All years</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Malignant teratoma</td>
<td>Kids, young adults</td>
<td>None, hCG elevation</td>
<td>Yes</td>
</tr>
<tr>
<td>Cystadenocarcinoma</td>
<td>Menstrual years</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Endometrioid tumor</td>
<td>Postmenopausal</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Granulosa cell tumor</td>
<td>Premenarche or postmenopausal</td>
<td>Irregular/excessive bleeding</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Ovarian thecoma</td>
<td>All years</td>
<td>Irregular</td>
<td>Rarely</td>
</tr>
<tr>
<td>Sertoli-Leydig cell tumor</td>
<td>All years</td>
<td>Amenorrhea</td>
<td>No</td>
</tr>
</tbody>
</table>
Disorders of the Male Reproductive System

Tumors of the Testes
- Testicular Germ Cell Tumors
- Testicular Sex Cord-Gonadal Stroma Tumors

Disorders of the Prostate
- Benign Prostate Hyperplasia
- Prostate Carcinoma

Disorders of the Penis
- Penile Diseases
- Penile Cancers
Ovarian and Testicular Tumor Analogues

<table>
<thead>
<tr>
<th>Ovarian Tumors</th>
<th>Testicular Tumor Analogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysgerminoma</td>
<td>Seminoma</td>
</tr>
<tr>
<td>Yolk sac tumor</td>
<td>Endodermal sinus tumor</td>
</tr>
<tr>
<td>Ovarian choriocarcinoma</td>
<td>Testicular choriocarcinoma</td>
</tr>
<tr>
<td>Ovarian teratoma (benign)</td>
<td>Testicular teratoma (malignant)</td>
</tr>
<tr>
<td>Sertoli-Leydig ovarian tumor</td>
<td>Leydig cell (interstitial) tumor, Sertoli cell tumor (androblastoma)</td>
</tr>
</tbody>
</table>
A 30-year-old woman presents to your clinic complaining of bilateral, diffuse breast pain. Her last menstrual period was 2 weeks ago and she says that she has felt several painful masses in both breasts during her self-examination in the shower. She is very concerned because she has a sister-in-law, who was recently diagnosed with breast cancer. On physical examination, you notice multiple, palpable masses on both breasts but no changes to the overlying skin. After taking a detailed history, you learn that the patient does not drink or smoke, has no immediate family members with a history of breast cancer, and there has been no nipple discharge. You order a fine needle aspiration cytology, which reveals an aspirate suggestive of a cyst. You reassure the patient that the lesion is benign and recommend that she avoid trauma to the affected regions and wear a brassiere that gives good support and protection.
Fibrocystic Disease of the Breast

| Etiology and Epidemiology | Caused by **hormonal imbalance** (increased estrogens and/or decreased progesterones)
<table>
<thead>
<tr>
<th></th>
<th>Peak incidence is between 25 and 50 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Several histologic types: (1) Cystic: multiple fluid-filled cysts appear blue (blue-dome cyst), cysts lined by polygonal cells with eosinophilic granular cytoplasm that are similar to apocrine epithelium (apocrine metaplasia), may see papillary projections of cystic epithelium; (2) Epithelial hyperplasia of breast duct: increase in number of epithelial layers in terminal duct lobules resulting in irregular lumens; (3) Stromal fibrosis: hyperplasia and fibrosis of breast stroma; (4) Sclerosing adenosis: increased number of acini, stromal fibrosis</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Presents with diffuse breast pain (midcycle tenderness) and multiple, palpable lesions, often bilateral; no changes in overlying skin or nipple; rapid fluctuation in size of masses is common</td>
</tr>
<tr>
<td>Treatment</td>
<td>Symptom management with pain control</td>
</tr>
<tr>
<td>Notes</td>
<td>Fibrocystic disease is the most common breast disorder. Cystic and stromal fibrosis represent no increased risk for carcinoma, but epithelial hyperplasia and sclerosing adenosis do carry a mildly increased risk.</td>
</tr>
</tbody>
</table>
A 21-year-old African American woman presents to the clinic complaining of a large mass in her left breast. She has no immediate family members with breast cancer. On physical examination, you notice that the mass is round, rubbery, mobile, and nontender. It is approximately 4 cm in diameter. You order a needle biopsy that shows a combination of connective tissue and cystic spaces taking on a leaflike appearance. You inform the patient that this lesion is most often benign, but nevertheless you suggest that she be treated with a local excision to remove the growth.
Benign Tumors of the Breast

Epidemiology

Fibroadenoma (FA): Occurs in women < 40; tends to occur more frequently and at a younger age in African American women. **Phyllodes tumor (PT):** Occurs most commonly after the age of 50. **Intraductal papilloma (IP):** Occurs in middle-aged women.

Pathology

FA: *Gross:* small, mobile, rubbery, firm mass with sharp, well-circumscribed edges. *Microscopic:* fibroblastic stroma surrounding cystic and glandular spaces; may regress after menopause and demonstrate calcifications. **PT:** *Gross:* large, bulky mass of connective tissue and cysts. *Microscopic:* cystic spaces on cut section of stroma contains leaflike projections from cyst walls; leaflike appearance on breast surface; 5%–10% undergoes malignant change with atypia (cystosarcoma phyllodes). **IP:** *Gross:* arising from major lactiferous ducts. *Microscopic:* proliferation of ductal epithelial tissue in papillary growth manner; apocrine metaplasia.

Clinical Manifestations

FA and PT: Increased size and tenderness of mass with pregnancy or menstrual cycle; no overlying skin changes; no lymphadenopathy; no nipple retraction. **IP:** Presents with nipple discharge.

Treatment

FA: No treatment or simple excision. **PT:** Local excision with wide margin; can recur after resection. **IP:** Simple excision.

Notes

Phyllodes tumor and intraductal papilloma carry a mildly increased risk of breast carcinoma.
A 50-year-old woman presents to your clinic after finding a mass on the upper outer quadrant of her left breast. After taking a thorough history, you learn that her mother died from breast cancer and her maternal aunt was also diagnosed with breast cancer at an early age. The patient started her period at age 11, did not bear any children, and has not been through menopause. On physical examination, she is markedly obese and you notice retraction of the skin and the nipple on her left breast. You locate the mass in question during your breast examination and find that it is fixed, hard, and nontender. The mass was not present on her last mammogram dating back 2 years. You also feel palpable axillary lymph nodes. You schedule the patient for an immediate mammography and needle biopsy to confirm your suspicions.
Breast Carcinoma (Part I)

Etiology and Epidemiology
Risk factors include **family history** of first-degree relative with breast cancer at young age (highest risk), autosomal dominant inheritance of mutations in **BRCA1** or **BRCA2** gene, female gender, **increased age**, early first menarche, delayed first pregnancy, nulliparity, late menopause, radiation, and exogenous estrogen use.

Incidence increases with age.

Pathology

Infiltrating ductal carcinoma: Tumor cells arranged in cords, islands, or glands embedded in dense fibrous stroma; may arise from **ductal carcinoma in situ (DCIS)**

Intraductal comedocarcinoma: Sheet of tumor cells confined within duct; central necrosis; periductal fibrosis with inflammation

Inflammatory: Lymphatic involvement of overlying skin

Paget disease: Paget cells (large cells with clear halo of pale cytoplasm) extend from ducts and invade epidermis of nipple; underlying ductal adenocarcinoma within subareolar excretory ducts always present

Infiltrating lobular: Often multiple and **bilateral**; cells line up (**Indian file**) with tumor cells surrounding lobule in target fashion; signet ring cells; may arise from **lobular carcinoma in situ (LCIS)** after many years

Medullary: Solid sheets of cells with large nucleoli in scant stroma; lymphocytic infiltrate

Mucinous (colloid): Pools of extracellular mucin surrounding tumor cell clusters; gelatinous consistency

Notes
Breast carcinoma is the second most common cause of cancer death among women.
A 49-year-old woman presents to your office concerned about a rash on her left nipple that has developed over the past month. The rash is itchy, but painless. On physical examination, you find a large eczematous-like patch over the left nipple as well as a fixed mass in the left breast. You perform both a skin biopsy as well as a needle biopsy of the mass. When the skin biopsy reveals large cells with a clear halo of pale cytoplasm invading the epidermis, you become certain that the biopsy of the mass will reveal carcinoma of the breast.
Breast Carcinoma (Part II)

| Clinical Manifestations | Painless, usually fixed, hard, nontender mass often found in **upper outer quadrant** of breast; retraction of overlying skin and nipple; palpable axillary lymph nodes
Infiltrating ductal carcinoma: Firm, fixed, fibrous mass
Inflammatory: Red, swollen, hot, painful to touch, orange-peel appearance of skin
Paget disease: Itchy, scaly, painless, eczematous **patches on the nipple**
Medullary: Soft, fleshy-consistency mass
Lab findings: Paraneoplastic syndrome with secretion of PTH-related peptide may lead to hypercalcemia
Imaging: Mammogram with microcalcifications, spiculated or enlarging mass |
| Treatment | Surgery and radiation therapy; chemotherapy; hormonal therapy (**tamoxifen or aromatase inhibitors**) for patients with cancer cells expressing estrogen receptor in their nuclei (ER/PR+); biologic therapy (**herceptin**) for patients with **HER2/neu** expression |
| Notes | Metastasis occurs to lymph nodes, lung, liver, and bone. |
A 45-year-old woman presents to the clinic complaining of vague abdominal pain for the past 4 days. She describes her pain as more of a pelvic pressure that is generalized bilaterally. Her last menstrual period was 2 weeks ago and she states that she has regular menstrual cycles. She denies the possibility of pregnancy and is currently not taking oral contraceptives. She has not had any changes in digestive functions and denies any nausea, vomiting, constipation, or diarrhea. She has no family history of ovarian cancer. When an ultrasound confirms your suspicions, you place the patient on oral contraceptive pills, believing that her symptoms will disappear in 2 months, and you schedule her for a follow-up ultrasound.
Ovarian Cysts

Etiology and Epidemiology
- **Follicular (F) cyst:** Associated with hyperestrinism and endometrial hyperplasia; most common cause of ovarian enlargement; mostly found during menstrual years
- **Corpus luteum (CL) cyst:** Found during menstrual years
- **Theca-lutein (TL) cyst:** Associated with choriocarcinoma, hydatidiform moles, and clomiphene (synthetic gonadotropin) therapy

Pathology
- **F:** Often bilateral; distention of unruptured Graafian follicle; lined by granulosa cells
- **CL:** Often unilateral; contains clear fluid; lined by yellowish luteal cells with cytoplasmic lipid droplets; may hemorrhage into persistent mature corpus luteum
- **TL:** Often bilateral and multiple; lined by luteinized theca cells

Clinical Manifestations
- All may be **asymptomatic** or present with pelvic pressure/pain or vague GI discomfort
 - **F:** Pain not associated with menstruation
 - **CL:** Delayed menstruation
 - **TL:** Amenorrhea. *Lab findings:* hCG elevated as a result of trophoblastic proliferation.

Treatment
- **F:** Often disappears with 2-month regimen of oral contraceptives; follow with serial ultrasounds; laparoscopic removal if persistent
- **CL and TL:** Cyst removal or unilateral oophorectomy

Notes
A 30-year-old white woman presents to the fertility clinic with her husband, complaining of the inability to conceive. The couple has already checked the husband’s sperm motility and count, which are within the normal range. The patient informs you that she has not menstruated for the last 4 months and that she has had a very irregular and sporadic menstrual cycle all of her life. You perform a physical examination, finding that the patient is obese with an inordinate amount of facial hair. She denies any abnormal uterine bleeding. You order serum studies that show elevated plasma LH and testosterone and decreased FSH levels. Based on these findings, you inform the patient that weight reduction will be the most effective treatment for restoring ovulation and that adjunct therapy with clomiphene can aid in ovulation.
Polycystic Ovarian Syndrome (Stein-Leventhal Syndrome)

Etiology and Epidemiology

Etiology unclear, but it is believed that a dysregulation of enzymes involved in androgen biosynthesis may be caused by **increased LH secretion**, thereby resulting in **excessive production of androgens**; associated with obesity, Cushing syndrome, congenital adrenal hyperplasia, genetic predisposition, and androgen-secreting adrenal tumors.

Common endocrine disorder affecting 2%–5% of women during **reproductive age**

<table>
<thead>
<tr>
<th>Pathology and Pathophysiology</th>
<th>Pathophysiology: Increased androgen production causes anovulation, multiple follicular cysts, and theca cell hyperplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross:</td>
<td>Ovaries enlarged; pearly white thickened ovarian capsule; multiple cysts</td>
</tr>
<tr>
<td>Microscopic:</td>
<td>Cysts have granulosa cell layer and luteinized theca cells; cortical stromal fibrosis</td>
</tr>
</tbody>
</table>

Clinical Manifestations

Amenorrhea; infertility; obesity; hirsutism (in 70%); insulin resistance with increased risk of diabetes; virilism; increased risk of breast and endometrial carcinoma

Lab findings: Increased LH, decreased FSH, increased testosterone, evidence of insulin resistance

Treatment

Weight loss; oral contraceptives; **metformin** for insulin resistance; gonadotropin analogs; ovulation induction with clomiphene

Notes
A 40-year-old woman presents to the emergency room with generalized abdominal pain and pelvic pressure. After taking a more complete history, you learn that she has not passed stool for the last 3 days and vomited this morning. She tells you that the pain has been steady over the last week. You order an abdominal/pelvic CT scan, which is inconclusive, but does demonstrate bilateral enlargement of the ovaries. The patient is taken to the operating room for an exploratory laparotomy that shows extensive mucinous ascites, cystic epithelial implants on the peritoneal surfaces, and several adhesions. You believe that the patient’s mucinous peritoneal involvement is caused by her ovarian condition.
Ovarian Tumors of Surface Epithelium Origin

<table>
<thead>
<tr>
<th>Epidemiology</th>
<th>Usually occurs in women > 20 years of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Serous cystadenoma:</td>
<td>Bilateral, benign cyst with fallopian tube-like epithelium</td>
</tr>
<tr>
<td>Papillary serous cystadenocarcinoma:</td>
<td>Bilateral, malignant cysts lined by stratified atypical epithelium; papillary growth; psammoma bodies</td>
</tr>
<tr>
<td>Mucinous cystadenoma:</td>
<td>Multilocular, benign cysts with columnar cells filled with mucin</td>
</tr>
<tr>
<td>Mucinous cystadenocarcinoma:</td>
<td>Malignant tumor with mucus-secreting atypical columnar epithelium; loss of gland architecture; necrosis</td>
</tr>
<tr>
<td>Brenner tumor:</td>
<td>Benign tumor with nests of cells resembling bladder transitional epithelium interspersed in fibrous stroma</td>
</tr>
<tr>
<td>Endometrioid tumor:</td>
<td>Malignant tumor resembling endometrium</td>
</tr>
<tr>
<td>Clear cell tumor:</td>
<td>Rare, malignant tumor composed of sheets of clear cells</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Mild, nonspecific abdominal discomfort; malignant forms may present with weakness, weight loss, and anorexia; pseudomyxoma peritonei (intraperitoneal accumulation of mucinous material) is associated with mucinous cystadenocarcinoma</td>
</tr>
<tr>
<td>Lab finding:</td>
<td>Elevated CA-125 in ovarian carcinomas</td>
</tr>
<tr>
<td>Treatment</td>
<td>Tumor removal; oophorectomy or hysterectomy; chemotherapy</td>
</tr>
<tr>
<td>Notes</td>
<td>Ovarian epithelial tumors make up 75% of ovarian tumors.</td>
</tr>
</tbody>
</table>
An 18-year-old white woman is admitted to your gynecologic service with a 1-month history of increasing abdominal pain and a rapidly enlarging pelvic mass. While admitting the patient, you perform a bimanual pelvic examination that reveals a left ovarian mass. This finding is consistent with the admitting note and was confirmed by abdominal/pelvic CT, which showed that the left ovary was twice as large as the right ovary. Serum studies demonstrate an elevated AFP level. There is no inguinal lymph node involvement and no signs of metastasis on imaging studies. Based on your findings, you perform a unilateral oophorectomy and send the diseased ovary for pathologic analysis. Histology shows glomerulus-like structures composed of a central blood vessel enveloped by germ cells within a space similarly lined by germ cells. These histologic bodies confirm your suspected diagnosis and you start the patient on combination chemotherapy.
Ovarian Tumors of Germ Cell Origin

Etiology and Epidemiology
Risk factors include **nulliparity**, positive **family history** of ovarian cancer, mutations in *BRCA1* and *BRCA2* genes and high expression of the *HER2/neu* oncogene. Occurs most commonly in children and young adults (except for teratomas, which can occur at all ages).

Pathology
- **Dysgerminoma**: Malignant unilateral tumor comprised of large vesicular cells with clear cytoplasm and central nuclei; analogous to male testicular seminoma.
- **Yolk sac tumor**: Malignant tumor with **Schiller-Duval bodies** (glomerulus-like structure composed of central blood vessel enveloped by germ cells).
- **Choriocarcinoma**: Aggressive and malignant tumor with areas of necrosis and hemorrhage composed of neoplastic syncytiotrophoblasts and cytotrophoblasts.
- **Teratoma**: 90% of germ cell tumors; **mature** teratomas (**dermoid cysts**) are **benign**; immature are malignant. **Histology**: structures from all germ layers.
 - **Struma ovarii**: Unilateral ovarian teratoma composed of **thyroid tissue**.

Clinical Manifestations
- Mild, nonspecific **abdominal discomfort**; struma ovarii may lead to hyperthyroidism.
- **Lab findings**: Increased **AFP** (yolk sac), increased **hCG** (choriocarcinoma).

Treatment
- Tumor removal; oophorectomy or hysterectomy; chemotherapy.

Notes
- Germ cell tumors make up 25% of ovarian tumors.
A 12-year-old girl is brought into the emergency room because of heavy vaginal bleeding. The child is also complaining of GI discomfort and pelvic pressure. She states that she had her last menstruation 2 weeks earlier and she is not sexually active. Her first menstruation was at the age of 10. On physical examination, the child appears to have undergone precocious puberty. A pelvic examination reveals a palpable right ovarian mass, which is confirmed by a CT scan. Serum studies show a significantly increased level of circulating estrogen. When a biopsy reveals distinctive, gland-like structures filled with an acidophilic material, you worry that this patient may have an increased risk of developing endometrial carcinoma later in life if this mass is not removed.
Ovarian Tumors of Sex Cord–Stromal Origin

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Risk factors include nulliparity, positive family history of ovarian cancer, mutations in BRCA1 and BRCA2 genes, and high expression of the HER2/neu oncogene. Affects all age groups.</th>
</tr>
</thead>
</table>
| Pathology and Pathophysiology | **Ovarian fibroma-thecoma (OFT):** Secretes estrogen; tumor composed of round lipid-containing cells in addition to well-differentiated fibroblasts.
Granulosa cell tumor (GCT): Secretes estrogen, causing endometrial hyperplasia/carcinoma in adults; characterized by Call-Exner bodies (small follicles filled with eosinophilic secretions) and small cuboidal, deeply stained granulosa cells arranged in anastomotic cords.
Sertoli-Leydig cell tumor (SLCT): Secretes androgens; tumor composed of Sertoli or Leydig cells interspersed with stroma. |
| Clinical Manifestations | Mild, nonspecific abdominal discomfort
OFT: Presents with Meig syndrome (triad of ovarian tumor, ascites, and hydrothorax)
GCT: Vaginal bleeding from endometrial hyperplasia; cystic disease of breast; endometrial carcinoma
SLCT: Virilism
Lab findings: Increased estrogen levels (OFT and GCT) |
| Treatment | Tumor removal; oophorectomy or hysterectomy; chemotherapy |
| Notes | Ovarian sex cord–stromal tumors are rare. |
A 31-year-old woman presents to the clinic complaining of abnormal vaginal bleeding. She states that her last menstrual period was 1 week ago and that she has not experienced abnormal bleeding before. Her past medical history is notable for two prior episodes of pelvic inflammatory disease in the last year. She has also been trying to conceive for the last year without success. On pelvic examination, redness and inflammation of the cervix is visible, but no discharge is apparent. You obtain an endometrial biopsy, which you suspect will show plasma cells along with macrophages and leukocytes in the glandular lumen. You begin empiric antibiotic therapy to prevent possible sequelae from the suspected diagnosis.
Endometritis

| **Etiology** | **Acute endometritis:** Caused by trauma, *Staphylococcus aureus* and *Streptococcus* species; usually occurs after delivery or miscarriage
Chronic endometritis: Caused by granulomatous disease, chronic PID, postpartal or postabortal states, and TB |
| **Pathology** | *Endometrium:* Plasma cells seen with macrophages and lymphocytes |
| **Clinical Manifestations** | **Acute:** Presents with inflammation after delivery or miscarriage
Chronic: Presents with abnormal vaginal bleeding, pain, discharge, and infertility |
| **Treatment** | Antibiotic therapy (helps to prevent other sequelae, such as salpingitis) |
| **Notes** | **Endometrial polyps** are masses composed of endometrial tissue within the endometrial cavity. They tend to occur in women older than 40 years of age and may result in uterine bleeding, but are usually benign. |
A 24-year-old woman presents to the clinic complaining of increased pain and bleeding during menstruation. Her last three menstruations have been accompanied by increasing intensity of cramping and larger amounts of blood. She tells you that her menstrual cycle has been irregular for the last 6 months. After taking a complete history, you learn that she has been having increased pelvic pain with intercourse. On pelvic examination, you palpate fixed, bilateral ovarian masses and an MRI reveals chocolate cysts on the ovary. You begin the patient on oral contraceptives and you suggest surgical removal of the masses if the pain persists.
Endometriosis

Etiology and Epidemiology
Etiology unknown, but thought to be caused by a combination of genetic, hormonal, and immune factors

Afflicts 10% of women, usually between the ages of 20 and 30

Pathology
Gross: Non-neoplastic nodules, composed of endometrial tissue in abnormal locations outside the uterus, including ovary (most common), uterine ligaments, rectovaginal septum, and pelvic peritoneum; presence of chocolate cysts on ovaries that have resulted from cyclic bleeding (menstrual type) of ectopic endometrial tissue

Microscopic: Endometrial glands; endometrial stroma; presence of hemosiderin pigment

Clinical Manifestations
Presents with fixed, palpable, bilateral ovarian masses, pain during menses (dysmenorrhea), and pain during intercourse (dyspareunia); menstrual irregularities may lead to infertility, which is the presenting complaint of 30%–40% of patients

Treatment
Oral contraceptives; progesterone; danazol; GnRH; surgical removal/coagulation of lesion

Notes
Adenomyosis is endometriosis within the myometrium and usually presents with uterine enlargement and irregular bleeding.
A 35-year-old African American woman presents to the clinic complaining of more frequent menstrual periods and profuse menstruation. She also complains of increased weakness and fatigue during her menstruations. On physical examination, you find a firm abdominal mass in the pelvic region. When questioned, she states that she was aware of the mass, but she notes that the mass often only appears during menstrual periods. When a biopsy of the mass reveals whorled bundles of smooth muscle cells, you reassure this patient that her condition is unlikely to proceed to malignancy.
Leiomyoma

Etiology and Epidemiology
Etiology unknown, but chromosomal abnormalities have been found in tumor cells
Most common benign neoplasm of female genital tract
Most commonly seen in women of **reproductive age** with an increased incidence in African Americans

Pathology
Gross: Multiple, enlarged, irregular, heterogenous tumors in the myometrium (intramural), beneath the endometrium (submucosal), or beneath the serosa (subserosal); tumor is **estrogen-sensitive** with its size increasing during pregnancy and decreasing with menopause

Microscopic: Whorled pattern of smooth muscle bundles; rare mitoses in muscle cells, although cellular atypia and giant cells may be present

Clinical Manifestations
Profuse menstruation; frequent menstrual periods; acute or recurrent pelvic pain; urinary frequency (owing to compression of bladder); infertility

Lab findings: Iron deficiency anemia (owing to blood loss)

Treatment
Myomectomy or hysterectomy; uterine artery embolization

Notes
Also called **uterine fibroids,** leiomyomas do not progress to leiomyosarcomas.
Leiomyosarcomas are fleshy, irregular tumors with areas of necrosis and hemorrhage that arise de novo and may protrude from the cervix. Leiomyosarcomas are more prevalent among African Americans, are malignant, and can be treated with combination chemotherapy.
A 60-year-old woman presents to the clinic with postmenopausal vaginal bleeding. After taking a complete history, you learn that she is nulliparous and suffers from type 2 diabetes, which is well-controlled with diet and insulin. On physical examination, the woman is obese and has a blood pressure reading of 150/96. You decide to perform a PAP smear as well as an endometrial biopsy. Based on the patient’s presenting signs and medical history, you are worried that you might find well-defined gland patterns lined by malignant stratified columnar epithelial cells on endometrial biopsy.
Endometrial Carcinoma

Etiology and Epidemiology
Risk factors include **unopposed estrogen use**, obesity, diabetes, HTN, nulliparity, and late menopause.

Peak incidence is between 55 and 65 years of age.

Endometrial carcinoma is the most common gynecologic malignancy.

Pathology
Typically preceded by **endometrial hyperplasia**

Gross: Localized polypoid tumor or diffuse tumor involving entire endometrial surface

Microscopic: **Adenocarcinoma** characterized by well-defined gland patterns lined by malignant stratified columnar epithelial cells; may see some squamous cells.

Clinical Manifestations
Presents with **postmenopausal vaginal bleeding**, leading to early diagnosis; may cause obstruction of the cervix with collection of pus (pyometra) or blood (hematometra) presenting with lower abdominal pain.

Treatment
Total hysterectomy and bilateral salpingo-oophorectomy; radiation therapy.

Notes
Endometrial hyperplasia is abnormal endometrial gland proliferation caused by excess estrogen (eg, polycystic ovarian syndrome, estrogen-secreting ovarian tumor, estrogen replacement therapy). It manifests clinically with postmenopausal vaginal bleeding and may lead to endometrial cancer depending on degree of atypia.
A 42-year-old woman presents to the clinic complaining of postcoital bleeding and vaginal discharge. She complains of a 3-month history of spotting in her underwear after intercourse and an odorous vaginal discharge that is not purulent. Her social history is significant for past practice of prostitution and her past medical history is significant for several STDs that were appropriately treated. She has not had a routine PAP smear in over 10 years. After a PAP smear reveals abnormal cells, you perform a cervical biopsy, worrying that you may find invasive malignant cells in the cervix and adjacent koilocytosis. You fear that the patient will need to undergo a hysterectomy with possible adjunct radiation therapy if your suspected diagnosis is confirmed.
Dysplasia, Carcinoma in Situ, and Squamous Cell Carcinoma of the Cervix

| Etiology and Epidemiology | Associated with **human papilloma virus** (HPV) types 16, 18, 31, and 33, early age of first intercourse and multiple sexual partners
<table>
<thead>
<tr>
<th></th>
<th>Occurs most commonly between the ages of 30 and 45</th>
</tr>
</thead>
</table>
| Pathology | **Cervical dysplasia**: Involves **squamocolumnar junction**; characterized by cells with hyperchromatic nuclei, irregular nuclear contours, and scant cytoplasm; epithelial growth begins at basal layer extending outward; classified as cervical intraepithelial neoplasia (CIN) subtypes grades I-III; CIN I is characterized by atypical undifferentiated cells only in lower third of epithelium, whereas CIN III has atypia through > 2/3 thickness of epithelium
| | **Cervical carcinoma in situ (CIS)**: Dysplastic cells extending through entire epithelium, but without invasion of basement membrane
| | **Invasive cervical carcinoma (ICC)**: *Gross*: can be exophytic, ulcerating, or infiltrating mass. *Microscopic*: usually **squamous cell carcinoma** with large cells and **keratinization**; can be adenocarcinoma or undifferentiated carcinoma; arises from preexisting CIN at squamocolumnar junction; non-neoplastic epithelial cells often demonstrate **koilocytosis** (associated with HPV infection). |
| Clinical Manifestations | **ICC**: **Irregular vaginal bleeding; postcoital spotting**; cervical ulceration; nonpurulent discharge; dysuria; invasive disease can obstruct ureters and lead to renal failure |
| Treatment | **ICC**: Hysterectomy; radiation therapy; prevention with HPV vaccine |
| Notes | **Screening for cervical cancer with PAP smears** should begin 3 years after intercourse and no later than age 21 and continue every 1–3 years until age 70. |
A 20-year-old woman presents to you, her obstetrician-gynecologist, for her annual checkup. She has a family history significant for a mother, who was diabetic and treated with DES for threatened abortion during her pregnancy. Thus, the patient has been aggressively screened for vaginal histologic changes since the age of 15. On pelvic examination, you note a new abnormal growth on the upper third of the vaginal anterior wall about 5 cm in diameter. You biopsy the growth and send it for histologic analysis, expecting to find vacuolated, glycogen-containing cells in the sample.
Neoplasms of the Vagina (Clear Cell Carcinoma, Squamous Cell Carcinoma)

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Clear cell adenocarcinoma (CCA): Rare; seen in daughters of women receiving DES therapy during pregnancy; usually diagnosed between ages of 15 and 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Squamous cell carcinoma (SCC): Extremely rare; associated with HPV infection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology</th>
<th>CCA: Gross: red granular lesion located on upper anterior vagina. Microscopic: vacuolated, glycogen-containing cells; preceded by vaginal adenosis (mucosal columnar epithelial-lined glands in areas normally lined by stratified squamous epithelium).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCC: Gross: invasive plaque-like mass in upper posterior vagina. Microscopic: begins as focus of epithelial thickening associated with dysplastic changes and transforms into invasive SCC with keratinization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
<th>CCA: May be clinically silent; insidious onset with vaginal bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCC: May be clinically silent; irregular spotting; vaginal discharge</td>
</tr>
</tbody>
</table>

| Treatment | Surgery and irradiation; careful monitoring and screening in high-risk patients |

| Notes | Sarcoma botryoides is a rare, polypoidal embryonal rhabdomyosarcoma and is the most common sarcoma of children < 5 years old. It presents as a mass resembling a bunch of grapes projecting into the vagina and requires surgical resection and chemotherapy. |
A 27-year-old woman presents to the emergency room with lower abdominal pain, chills, fever, and a purulent vaginal discharge. After taking a history, you learn that she has had multiple sexual partners over the last year and has not practiced safe sex. She states that the pain started 3 days ago with subsequent fevers, chills, and night sweats. On physical examination, she is febrile with a temperature of 102.4°F. Pelvic examination is significant for cervical motion tenderness with foul-smelling, purulent, cervical discharge. Her pregnancy test is negative. You admit the patient to the hospital and you begin her on IV cefoxitin plus doxycycline while awaiting the results of her endocervical culture.
Pelvic Inflammatory Disease

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Common causes include Chlamydia trachomatis (subacute), Neisseria gonorrhoeae (acute), Gardnerella vaginalis, and Trichomonas vaginalis. Usually occurs in young, nulliparous, sexually active women with multiple partners.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Fallopian tubes: Edematous tubal serosa with fibrin covering; purulent exudate in lumen; collections of pus may form a pyosalpinx or degrading pus may form a hydrosalpinx (water-filled fallopian tubes). Infection can also involve the ovaries and other pelvic structures.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>High fever; lower abdominal pain; cervical motion tenderness (chandelier sign); purulent cervical discharge; RUQ pain indicates perihepatitis (Fitz-Hugh-Curtis syndrome). Salpingitis is a risk factor for ectopic pregnancy, infertility, chronic pelvic pain, and adhesions.</td>
</tr>
<tr>
<td>Treatment</td>
<td>Antibiotics effective against causative organism.</td>
</tr>
<tr>
<td>Notes</td>
<td>Ectopic pregnancy occurs most often in fallopian tubes, but may also occur in ovary, abdominal cavity, or cervix. Risk factors include salpingitis, endometriosis, and tubal ligation. Clinical manifestations include severe abdominal pain 6 weeks after last menstruation and elevated hCG, which is lower than normal for pregnancy stage.</td>
</tr>
</tbody>
</table>
After vaginally delivering a newborn from a 32-year-old woman, you find the mother to be hemorrhaging an abnormally large amount of blood. You recall that she has had one previous C-section and extensive scarring. Given the amount of blood after delivery and the abnormal gross appearance of the placental remnants, you believe that the patient’s pregnancy was complicated by a defective decidual layer that allowed the placenta to attach directly to the myometrium. You call the operating room to set up for an emergency hysterectomy, which you believe may be necessary to control the patient’s massive hemorrhage.
Placental Attachment Abnormalities (Abruptio Placentae, Placenta Previa, Placenta Accreta)

| **Etiology** | Abruptio placentae: May be associated with DIC; increased risk with smoking, cocaine, and hypertension
Placenta accreta: Predisposed by prior C-section scars or endometrial inflammation
Placenta previa: Predisposed by prior C-section scars |
| **Pathophysiology** | Abruptio placentae: Premature separation of placenta
Placenta accreta: Defective decidual layer allows placenta to attach directly to myometrium
Placenta previa: Attachment of placenta to lower uterine segment or cervix; may occlude cervical os; may coexist with placenta accreta |
| **Clinical Manifestations** | Abruptio placentae: Painful uterine bleeding usually during third trimester; can result in fetal death
Placenta accreta: Massive hemorrhage after delivery
Placenta previa: Painless bleeding in any trimester; premature labor |
| **Treatment** | Abruptio placentae: Immediate fetal delivery; control of maternal bleeding
Placenta accreta: Hysterectomy may be necessary to stop bleeding
Placenta previa: Bed rest; possible hospitalization |
| **Notes** | 194 |
A 31-year-old pregnant woman is brought to the emergency room complaining of headaches and blurred vision of 1-week duration. She is currently 32 weeks into her first pregnancy. On physical examination, you find edema of the face and lower extremities. Her blood pressure is 160/100, but she has no prior history of hypertension. Laboratory studies show a mild thrombocytopenia, elevated AST and ALT, and significant proteinuria. Based on these findings, you admit the patient for immediate bed rest, close monitoring, and blood pressure control. You tell the patient that it is possible that you may need to deliver her baby early in order to treat the patient’s current condition.
Preeclampsia and Eclampsia

Etiology and Epidemiology
Risk factors include preexisting **hypertension, diabetes, chronic renal disease,** autoimmune disorders, or twin gestation

Affects 7% of pregnant women usually during the **third trimester** of a woman’s first pregnancy

Pathology and Pathophysiology

<table>
<thead>
<tr>
<th>Pathology and Pathophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta: Evidence of infarct; presence of retroplacental hematomas; decreased vascularity; fibrinoid necrosis</td>
</tr>
</tbody>
</table>

Pathophysiology: Intrinsic defect in invading cytotrophoblast leads to remodeling of uterine vasculature and resulting **placental ischemia;** decreased placental perfusion induces vasoconstrictive effects leading to **toxemic hypertension** in susceptible women

Clinical Manifestations

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preeclampsia: Triad of hypertension, proteinuria, and edema; associated symptoms include headache, blurry vision, and abdominal pain</td>
</tr>
</tbody>
</table>

Eclampsia: Preeclampsia triad plus **seizures,** altered mentation, hyperreflexia, and possibly DIC

Lab findings: Thrombocytopenia, elevated LFTs, hyperuricemia, hemolytic anemia

Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preeclampsia: Delivery of fetus as soon as possible; bed rest; salt restriction; treatment of hypertension</td>
</tr>
</tbody>
</table>

Eclampsia: Medical emergency; treat with IV magnesium sulfate and diazepam; delivery of fetus

Notes

HELLP syndrome refers to **hemolysis, elevated LFTs,** and **low platelets** and is a severe form of preeclampsia.
An 18-year-old woman in her sixteenth week of pregnancy presents to the emergency room complaining of excessive nausea and vomiting as well as vaginal bleeding. She states that she has been vomiting 10 times each day for the last 3 days and is constantly nauseous. She has experienced spotting for the past 4 days with frank vaginal bleeding on the morning of presentation. You decide to obtain an ultrasound and you order serum studies including a serum hCG level. The ultrasound shows a classic snow storm appearance with multiple echoes, indicating edematous villi within an enlarged uterus and the absence of a fetus or placenta. Serum studies show hCG levels in excess of 50,000 mIU/mL. You admit the patient to the hospital and you schedule her for an immediate emptying of the uterus, preferably by suction.
Hydatidiform Mole and Gestational Choriocarcinoma

Etiology and Epidemiology

Hydatidiform mole (HM): Arises because of fetal chromosomal abnormalities; complete mole is 46, XX with chromosomes all derived from sperm and partial mole is triploid (69, XXY) or tetraploid and is usually owing to fertilization of ovum by multiple sperm.

Gestational choriocarcinoma (GC): Preceded by complete hydatidiform mole, abortions, and ectopic or normal pregnancy; increased incidence in Asia and Africa.

Pathology

HM: *Complete:* edematous chorionic villi with cystic swelling (grape-like clusters); hyperplasia of trophoblastic cells; **honeycombed uterus** appearance; absence of fetal parts. *Partial:* edematous changes of some villi; presence of fetal parts.

GC: Tumor with areas of necrosis and hemorrhage composed of cells resembling syncyiotrophoblasts and cytotrophoblasts; may see endometrial penetration.

Clinical Manifestations

HM: Nausea and vomiting; **painless vaginal bleeding;** uterus is large for gestational age; may present with hypertension during first trimester. **Imaging:** *snowstorm appearance* with no fetal or placental parts seen on ultrasound.

GC: Excessive vaginal bleeding after evacuation of mole or after delivery of fetus/abortant; hemoptysis owing to early hematogenous spread to lungs.

Lab findings: Increased serum hCG (HM and GC)

Treatment

HM: Immediate emptying of uterus by suction

GC: Surgical removal; chemotherapy

Notes

196
A 27-year-old white man presents to the clinic complaining of right testicular enlargement over the past 3 months. On taking a complete history, you find that he had no trauma to the area prior to the enlargement, experiences no pain, and denies any problems urinating. He does admit to having low-grade fevers, night sweats, fatigue, malaise, and a 15-pound weight loss over the last 3 months. On physical examination, the right testicle is twice the size of the left testicle, and the mass does not transilluminate with a flashlight shined through it. Serum studies are ordered and elevated hCG levels are found. AFP levels are normal. You obtain a biopsy and send it for histologic examination, expecting the results to show sheets of uniform cells with distinct cell membranes, clear cytoplasm, large nuclei, and prominent nucleoli divided into poorly demarcated lobules.
Testicular Germ Cell Tumors

Etiology and Epidemiology

| Risk factors include **cryptorchidism**, genetic factors, and testicular dysgenesis |
| Seminoma (S): Most common form; analogous to ovarian dysgerminoma |
| Embryonal carcinoma (EC): Second most common form |
| **Endodermal sinus (yolk sac) tumor (EST)**: More common in **infants and children** |
| **Teratoma (T)**: 30% of all testicular tumors |
| **Choriocarcinoma (CC)**: Most malignant form |

Pathology

| **S**: Sheets of uniform cells with distinct cell membranes, clear cytoplasm, and large nucleus |
| **EC**: Glandular or tubular cell patterns with papillary convolutions |
| **EST**: Mesodermal core with layers resembling those of primitive glomeruli |
| **T**: Derived from two or more embryonic layers; mature teratomas are always malignant in contrast with ovarian dermoid cysts |
| **CC**: Sheets/cords of cells similar to syncytiotrophoblasts and cytotrophoblasts with clear cytoplasm |

Clinical Manifestations

| **S**: Painless testicular enlargement |
| **EC**: Painful mass in testes often with metastasis |
| **EST**: Testicular mass presents at < 3 years of age |
| **T**: Painful lump in testes; gynecomastia |
| **CC**: Painless, nodular testicular swelling; gynecomastia; supraclavicular lymphadenopathy (if metastasized) |

Lab findings: Elevated hCG (S, EC, T, CC), elevated AFP (EST, T) |

Treatment

Radiotherapy; chemotherapy; radical inguinal orchectomy |

Notes

Most testicular tumors of all types occur in white boys and men between the ages of 15 and 34.
A 30-year-old man presents to the clinic complaining of enlarged breasts and a swollen left testicle. On physical examination, you find that the left testicle does not illuminate and is not associated with pain. You order serum studies that show no increase in hCG or AFP, but a marked increase of circulating estrogens is noted. You obtain a testicular biopsy, which demonstrates characteristic rod-shaped crystalloids in the cytoplasm of the testicular cells, thereby confirming your suspected diagnosis.
Testicular Sex Cord–Gonadal Stroma Tumors

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostly benign tumors arising from sex cord stroma</td>
</tr>
<tr>
<td>Analogous to Sertoli-Leydig cell ovarian tumors</td>
</tr>
<tr>
<td>Seen most commonly between ages of 20 and 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leydig cell tumor: Small yellowish-brown nodules composed of polygonal cells with eosinophilic cytoplasm and round nucleus; characteristic intracytoplasmic Reinke crystals (rod-shaped crystalloids); tend to produce androgens and estrogens</td>
</tr>
<tr>
<td>Sertoli cell tumor: Firm nodule composed of tumor cells arranged in trabeculae and forming cord structures similar to seminiferous tubules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testicular swelling</td>
</tr>
<tr>
<td>Precocious puberty in children and gynecomastia in adults more commonly seen with Leydig cell tumors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotherapy; chemotherapy; radical inguinal orchectomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testicular lymphomas account for 5% of testicular neoplasms and are the most common testicular cancer in men older than 60.</td>
</tr>
</tbody>
</table>
A 72-year-old man presents to the clinic complaining that he feels that he cannot completely empty his bladder while urinating. He states that he has been experiencing increased frequency of urination as well as nocturia and that he has had difficulty starting and stopping the stream of urine. Laboratory results reveal an increased total PSA with a proportionate increase in the fraction of free PSA. You begin the patient on finasteride and advise him that his condition predisposes him to urinary tract infections.
Benign Prostatic Hyperplasia (BPH)

| **Etiology and Epidemiology** | Caused by age-related **increase in estradiol levels**
Very common in men over the age of 50 (affects 90% of men by age 70) |
|-----------------------------|---|
| **Pathology and Pathophysiology** | *Pathophysiology:* **Increase of estradiol** promotes expression of receptors for DHT leading to prostatic growth
Gross: Rubberly, nodular enlargement of the periurethral and transurethral zones (middle and lateral lobes) of the prostate
Microscopic: Hyperplasia of both glandular and fibromuscular stromal elements |
| **Clinical Manifestations** | Presents with increased **frequency** of urination, **nocturia, dysuria,** and difficulty starting and stopping the stream of urine (owing to compression of urethra by nodules).
Complications include **urinary obstruction**, bladder distention and hypertrophy, hydronephrosis, hydroureter, and **UTIs**
Lab findings: Increased total PSA with proportionate increase in fraction of free PSA |
| **Treatment** | **Finasteride** (5α-reductase inhibitor); transurethral resection of prostate (TURP) |
| **Notes** | BPH is not considered a premalignant condition and is the most frequent cause of urinary tract obstruction in men. |
An 81-year-old man presents to the clinic complaining of pain with urination. On taking a complete history, you learn that he has had difficulty in starting and stopping the stream of urine for the last 4 months and has recently been suffering from severe back pain. On physical examination, you perform a digital rectal examination and find a large palpable prostate nodule, which is firm and irregularly shaped. You fear that laboratory tests will demonstrate an increased total PSA with a decreased fraction of free PSA and may also demonstrate an increase in serum alkaline phosphatase. You immediately refer the patient to a urologist for prostatic biopsy.
Prostate Carcinoma

Epidemiology

Most common cancer among men and second leading cause of cancer death in men

Occurs in men > 50 years of age

Pathology

Gross: Irregular nodules arising from peripheral group of glands (peripheral zone of posterior lobe is most common)

Microscopic: Adenocarcinoma with well-defined glands lined by cuboidal cells with large nuclei and prominent, large nucleoli; may also be undifferentiated with cells growing in cords or sheets; often see invasion of vascular or lymphatic vessels of prostatic capsule

In later stages, may progress to bony osteoblastic metastasis via hematogenous spread

Clinical Manifestations

Frequently asymptomatic, but may present with dysuria, increased urinary frequency or back pain (if metastasis to bone); most often diagnosed on digital rectal examination with palpation of irregular, enlarged, firm nodule with confirmation of diagnosis via prostatic biopsy

Lab findings: Increased serum PSA and prostatic acid phosphatase (useful tumor markers for disease progression), increased total PSA with decreased fraction of free PSA, increased serum alkaline phosphatase (if osteoblastic metastasis)

Treatment and Prognosis

Prostatectomy; radiotherapy; GnRH analogues (leuprolide); antiandrogens (eg, flutamide); chemotherapy

Can have an indolent or aggressive course as predicted by Gleason system of grading, which is based on differentiation of tumor

Notes

PSA testing and digital rectal examination should be offered annually for screening purposes beginning at age 50.
While on a humanitarian medical mission to South Africa as a urologist, you encounter a 4-year-old boy who is brought to your makeshift clinic because of the inability to pass urine. His mother is concerned that he has not been able to void for the last 2 days and that he has always struggled with the voiding of urine since birth. On physical examination, you find an abnormal urethral opening on the ventral surface of the penis. On further examination, you find that the testes are not palpable in the child’s scrotum. You recognize the urethral defect as a common congenital abnormality and believe that your surgical skills can help relieve the urinary tract obstruction and prevent future risks of ascending urinary tract infections in this patient.
Penile Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Definition</th>
<th>Clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypospadias and Epispadias</td>
<td>Congenital malformation resulting in the abnormal urethral opening on the ventral (hypospadias) or dorsal (epispadias) surface of the penis; associated with failure of testicular descent and malformations of urinary tract (extrophy of bladder)</td>
<td>Urinary tract obstruction and irregular ejaculation</td>
</tr>
<tr>
<td>Phimosis</td>
<td>Abnormally tight foreskin that cannot be retracted over glans penis; usually because of a congenital condition or can be the result of inflammation or trauma</td>
<td>Presents as penile pain or as acute urinary retention</td>
</tr>
<tr>
<td>Peyronie Disease</td>
<td>Subcutaneous fibrosis of the dorsum of the penis of unknown etiology</td>
<td>Abnormal curvature of the shaft or urethral constriction occurring in older men</td>
</tr>
<tr>
<td>Balanitis</td>
<td>Inflammation of the glans penis; caused by infection (syphilis, gonorrhea, herpes, chancroid, Candida, and Gardnerella)</td>
<td>Signs of penile infection occurring more often in uncircumcised men with poor hygiene</td>
</tr>
</tbody>
</table>
A 45-year-old Kenyan man, who has just immigrated to the United States, comes to your clinic complaining of a long-standing lesion on his penis that has started to bleed. He says that the growth has been there for over a year and that it just began to ulcerate. On physical examination, the penile lesion appears on the inner surface of the prepuce near the coronal sulcus. Macroscopically, the papillary lesions look like condylomata acuminata, producing a cauliflower-like fungating mass. There is a bleeding ulceration forming on the lesion. The patient denies any pain, fever, or urinary symptoms associated with the lesion. You biopsy the lesion in question and send it off for histologic examination to confirm your suspected diagnosis. You also work up the patient for possible venereal disease, which may be underlying his present condition.
Penile Cancers

Etiology and Epidemiology

Bowen disease (BD): Affects uncircumcised men > age 50
Erythroplasia of Queyrat (EQ): Median incidence in fifth decade; variant of Bowen disease
Bowenoid papulosis (BP): Affects younger age group
Penile SCC: Increased incidence in Asia and Africa; peak age 40–70; predisposed by uncircumcision, poor hygiene, and HPV types 16, 18, 31, and 33

Pathology

BD: Proliferating dysplastic epidermal cells with atypical mitoses; epidermal-dermal basement membrane intact
EQ and BP: Histologically similar to Bowen disease
SCC: Evolves from Bowen disease and EQ; papillary lesions simulate condyloma acuminata and produce a cauliflower-like fungating mass; flat lesions appear as areas of epithelial thickening accompanied by mucosal fissuring

Clinical Manifestations

BD: Single erythematous plaque on shaft of penis or scrotum; less than 10% evolve to invasive carcinoma; associated with an increased risk of visceral malignancy
EQ: Single erythematous plaque on glans penis or prepuce; 10% evolve into invasive carcinoma
BP: Multiple wart-like lesions resembling condylomata acuminatum; does not progress to invasive carcinoma
SCC: Nonpainful lesion that may bleed or undergo secondary ulceration and infection

Treatment

Surgical removal of SCC

Notes

202
Disorders of the Nervous System

Congenital Diseases
- Tuberous Sclerosis
- Congenital Central Nervous System Abnormalities

Degenerative Disorders
- Parkinson Disease
- Alzheimer Disease
- Huntington Disease
- Amyotrophic Lateral Sclerosis

Demyelinating Disorders
- Multiple Sclerosis
- Guillain-Barre Syndrome

Neoplasms
- Neurofibromatosis
- Retinoblastoma
- Medulloblastoma
- Epidymoma
- Glioblastoma Multiforme
- Oligodendroma
- Schwannoma
- Meningioma
- Neuroblastoma

Cerebrovascular Disease
- Berry Aneurysm and Subarachnoid Hemorrhage
- Hemorrhagic Stroke
- Ischemic Stroke

Epidural and Subdural Hematoma
- Hydrocephalus
- Syringomyelia
- Pyogenic and Viral Meningitis
- Seizures
- Myasthenia Gravis

Other Disorders
- Cerebrovascular Disease
- Neoplasms
- Demyelinating Disorders
- Degenerative Disorders
- Congenital Diseases
- Other Disorders

Neurofibromatosis
- Retinoblastoma
- Medulloblastoma
- Epidymoma
- Glioblastoma Multiforme
- Oligodendroma
- Schwannoma
- Meningioma
- Neuroblastoma
Functional Areas of the Brain

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Functional Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>Motor and premotor cortex, frontal eye fields, Broca speech area, executive</td>
</tr>
<tr>
<td></td>
<td>functioning (concentration, judgment, and problem solving)</td>
</tr>
<tr>
<td>Temporal</td>
<td>Primary auditory cortex, memory, Wernicke area</td>
</tr>
<tr>
<td>Parietal</td>
<td>Sensory cortex, spatial orientation</td>
</tr>
<tr>
<td>Occipital</td>
<td>Primary visual cortex</td>
</tr>
</tbody>
</table>

Blood Supply to the Cerebrum

<table>
<thead>
<tr>
<th>Artery</th>
<th>Origin and Region Supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior cerebral artery</td>
<td>Branches from internal carotid; supplies medial surface of brain, anterior limb</td>
</tr>
<tr>
<td></td>
<td>of internal capsule, basal ganglia, and frontal pole</td>
</tr>
<tr>
<td>Middle cerebral artery</td>
<td>Branches from internal carotid; supplies lateral surface of brain, posterior limb</td>
</tr>
<tr>
<td></td>
<td>of internal capsule, and basal ganglia</td>
</tr>
<tr>
<td>Posterior cerebral artery</td>
<td>Branches from basilar artery; supplies occipital pole, inferomedial temporal</td>
</tr>
<tr>
<td></td>
<td>lobes, and the thalamus</td>
</tr>
<tr>
<td>Lateral striate arteries</td>
<td>Branches from middle cerebral artery; supplies internal capsule</td>
</tr>
<tr>
<td></td>
<td>and basal ganglia</td>
</tr>
</tbody>
</table>
A baby boy is born via an uncomplicated vaginal delivery. You notice a large birthmark, associated with dimples and hairy tufts, at the base of his back. Upon questioning his mother, you learn that she did not take any prenatal vitamins or receive prenatal care during her pregnancy. Although the child initially appears normal, you suggest that the child be evaluated for a disorder caused by a neural tube defect and you fear that he may develop autonomic and motor deficits later in life.
Congenital CNS Abnormalities

Neural Tube Defects

Etiology: Associated with folate deficiency during initial gestation and elevated α-fetoprotein

Spina bifida: Failure of posterior end of neural tube to close; results in vertebral bony defect through which meninges can herniate (meningocele) or meninges and spinal cord can herniate (meningomyelocele) resulting in neurologic symptoms; bony defect may also be asymptomatic until later in life, when neurologic symptoms appear (spina bifida occulta)

Encephalocele: Defect in the cranium allows for out-pouching of brain through skull

Anencephaly: Failure of anterior end of neural tube to close; results in absence of fetal brain and often absence of overlying skull

Holoprosencephaly

Pathology: Failure of embryo’s forebrain to divide into bilateral cerebral hemispheres, leading to **incomplete separation of cerebral hemispheres**

Clinical Manifestations: Facial and neurological defects

Arnold-Chiari Malformation

Pathology: Characterized by a small posterior fossa, resulting in displacement of cerebellum and medulla through foramen magnum

Clinical manifestations: Hydrocephalus; associated strongly with thoracolumbar meningomyelocele and syringomyelia

Dandy-Walker Malformation

Pathology: Characterized by large posterior fossa with replacement of cerebellar vermis with large cyst; associated with brainstem nuclei dysplasias

Clinical Manifestations: Seizures and cerebellar dysfunction
A 6-year-old boy presents to your office complaining of red nodules that have appeared on his face. He is mentally retarded and has a seizure disorder. His mother suffers from similar symptoms and has recently been diagnosed with a rhabdomyoma of the heart and renal angiomyolipomas. You begin to suspect that this boy is suffering from an autosomal dominant genetic disorder.
Tuberous Sclerosis

Etiology	**Autosomal dominant** disorder resulting from a mutation in one of several different genes
Pathology	**Brain hamartoma (cortical tuber):** Firm nodule located in cerebral cortex composed of disorganized array of neurons with large vesicular nuclei and eosinophilic cytoplasm. Also associated with neoplasms occurring outside the CNS, including cardiac rhabdomyomas, adenoma sebaceum of the face (lesion consisting of malformed blood vessels), renal angiomyolipomas (lesion consisting of malformed blood vessels, adipocytes, and smooth muscle), and cysts of the bone and lung.
Clinical Manifestations	Seizures and mental retardation in infancy; red nodules on face (adenoma sebaceum), which appear between the ages of 5 and 10; symptoms related to cardiac rhabdomyoma and renal angiomyolipoma
Treatment	Symptomatic (control seizures); genetic counseling

Notes
A 27-year-old Caucasian woman presents to your office complaining of visual disturbances. During physical examination, you note that on lateral gaze, one eye does not adduct and the other eye has nystagmus on abduction. Testing of cerebellar function reveals an intention tremor and you also note decreased sensation on both legs. You obtain CSF fluid via a lumbar puncture and find multiple oligoclonal bands of IgG on electrophoresis. You order an MRI of the brain and refer the patient to a neurologist for further care of her condition.
Multiple Sclerosis

Etiology and Epidemiology
Etiology unknown, although autoimmune, genetic, and environmental factors have been implicated. Incidence increases proportionally with distance from equator and incidence is more common in HLA-DR2 individuals. Most often presents in Caucasian women between the ages of 20 and 30.

Pathology
CNS: Multiple firm plaques representing demyelination within the white matter of the CNS, especially in optic nerve, brainstem, and periventricular areas.

Microscopic plaque: Depletion of oligodendrocytes; monocytes, lymphocytes, and lipid-laden macrophages around vessels; gliosis and astrocyte proliferation.

Clinical Manifestations
Relapsing and remitting course, but eventually remissions become incomplete; classic Charcot triad: nystagmus, scanning speech, and intention tremor; motor and sensory impairment of trunk and extremities (hemiparesis, ataxia); visual impairment (optic neuritis, retrobulbar neuritis, internuclear ophthalmoplegia [on lateral gaze, one eye does not adduct and the abducting eye has nystagmus caused by demyelination of MLF]); urinary/bowel incontinence owing to loss of sphincter control.

Lab findings: Lumbar puncture shows mild lymphocytosis and elevated IgG, manifested as multiple oligoclonal bands on electrophoresis.

Treatment
Corticosteroids and other immunosuppressants.
A 29-year-old man presents to the emergency room complaining of muscle weakness. He tells you that the weakness began in his calves and has now ascended to involve his thighs, hips, torso, and arms. Upon directed history, you learn that he recently recovered from a flu-like illness. Physical examination reveals symmetrical muscle weakness in all limbs and absent deep tendon reflexes. A lumbar puncture demonstrates an albumino-cytologic dissociation of the CSF. You admit this patient to the intensive care unit for observation as you fear that he may need mechanical respiratory support for his condition.
Guillain-Barre Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Usually occurs after a flu-like viral illness (eg, EBV, HSV, CMV), but has also been associated with surgical procedures and bacterial infections (mycoplasma, campylobacter)</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Pathophysiology:** Viral illness causes a T-cell-mediated immune reaction that results in demyelination of peripheral nerves

Peripheral nerves: Endoneurial and perivenular infiltration by lymphocytes and macrophages; segmental demyelination |
| **Clinical Manifestations** | **Ascending muscle weakness and paralysis** beginning in distal lower limbs; absent deep tendon reflexes; sometimes sensory loss in extremities; **facial diplegia**; abnormal autonomic function (dysrhythmias, labile blood pressure)

Can progress to respiratory failure or become chronic (chronic inflammatory demyelinating polyradiculoneuropathy)

Lab findings: Lumbar puncture shows albumino cytologic dissociation of CSF (large protein content increase accompanied by only a mild cell count increase) |
| **Treatment and Prognosis** | **Plasmapheresis; IV immunoglobulin;** supportive care (respiratory support until recovery)

Most patients recover after weeks to months, but 10%–20% are left with permanent disability |
| **Notes** | **Postinfectious encephalitis** can follow viral illnesses (eg, chicken pox, rubella, measles, mumps) and is characterized by transient, widespread demyelination. |

207
A 78-year-old woman is brought to your clinic by her son and daughter. They tell you that she has been very forgetful lately and has twice wandered out of her house and gotten lost, requiring the police to bring her back. Upon speaking with the woman, you note that her short-term memory is compromised and that she has trouble finding the words to express what she wants to say. An MRI of the brain does not reveal any evidence of a stroke. You suspect that a biopsy of this woman’s brain would reveal neuritic plaques and neurofibrillary tangles.
Alzheimer Disease

Etiology and Epidemiology

Etiology unknown, but theories involve abnormal expression of amyloid gene resulting in increased Aβ protein, deficiency of choline acetyltransferase leading to decreased acetylcholine levels, or atrophy of the nucleus basalis of Meynert. Familial Alzheimer disease involves mutations in amyloid precursor protein (*APP*) gene on chr 21, mutations in presenilin genes (chr 1,14), and the ε4 allele of apolipoprotein E (chr 19).

Affects 50% of people > 85 years old

Pathology

Gross: Cortical atrophy of brain with widening of sulci and ventricles

Microscopic: Neurofibrillary tangles composed of tau protein within cytoplasm that displace nucleus; neuritic plaques (spherical cluster with Aβ protein core and peripheral astrocytes); amyloid angiopathy; Hirano bodies (eosinophilic bodies in hippocampal cells); granulovacuolar degeneration (cytoplasmic vacuoles in hippocampal cells)

Clinical Manifestations

Dementia presenting with progressive memory disturbances, disorientation, aphasias, visuospatial deficits, loss of motor skills or incontinence

Treatment and Prognosis

Donepezil (acetylcholinesterase inhibitor) to slow progression

Progressive disease with no cure

Notes

Pick disease also causes dementia, but tends to affect women more than men. Histopathologically, it is characterized by cortical atrophy of the frontotemporal lobes and Pick bodies (cytoplasmic inclusion bodies made of neurofilaments).
A 48-year-old man presents to your clinic complaining of involuntary movements of his arms and legs. He tells you that his mother had similar symptoms, which eventually progressed to dementia. Physical examination and history reveal involuntary jerky movements, flattened affect, and poor concentration. When an MRI of the brain demonstrates atrophy of the caudate nucleus and putamen as well as dilatation of the ventricles, you fear that this patient will eventually succumb to the same dementia as his mother.
Huntington Disease

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal dominant disorder associated with increased number of CAG repeats in Huntington disease gene on chr 4</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Atrophy of caudate nucleus and putamen; may also see atrophy of globus pallidus and frontal lobe; dilation of lateral and third ventricles
Microscopic: Loss of striatal neurons (GABAergic neurons); fibrillary gliosis |
| **Clinical Manifestations** | Progressive disorder that initially manifests between the ages of 40 and 50; chorea (involuntary jerky movements); cognitive impairment; mood disturbances
Eventually progresses to severe dementia |
| **Treatment and Prognosis** | Symptomatic treatment for dyskinesia and mood disturbances
Usually fatal within 15–20 years of diagnosis |
| **Notes** | Huntington disease, as well as fragile X syndrome and myotonic dystrophy, demonstrates anticipation, a phenomenon in which the number of repeats increases with each generation and results in more severe disease manifestations. |
A 64-year-old man presents to your neurology clinic complaining of unsteadiness. As you obtain a history from this patient, you notice that he has expressionless facies and a pill-rolling tremor at rest. Physical examination reveals a shuffling gait, rigidity in response to passive movement, and bradykinesia. You suspect that the neurons of his substantia nigra may contain Lewy bodies and you prescribe levodopa to treat his symptoms.
Parkinson Disease

| Etiology and Epidemiology | Etiology unknown
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usually presents in people over the age of 50</td>
</tr>
</tbody>
</table>

Pathology and Pathophysiology	Gross: Pale substantia nigra and locus ceruleus
	Microscopic: Loss of pigmented dopaminergic neurons in substantia nigra with gliosis; Lewy bodies (eosinophilic, intracytoplasmic inclusion bodies) in substantia nigra neurons
	Pathophysiology: Loss of dopaminergic input to the striatum results in loss of stimulation of the basal ganglia motor circuit

| Clinical Manifestations | Symptom constellation of pill-rolling tremor, bradykinesia, shuffling gait, rigidity, postural instability, and expressionless facies (all together known as parkinsonism)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Of patients with Parkinson disease, 10%–15% develop dementia</td>
</tr>
</tbody>
</table>

| Treatment | Pharmacologic therapy (amantidine, anticholinergics, levodopa, dopamine agonists, MAO-B inhibitors) |

| Notes | Other causes for parkinsonism include repeated trauma (as with boxers), drugs (especially MPTP), postencephalitic parkinsonism (observed after the influenza pandemic in the early 1900s), and Shy-Drager syndrome (parkinsonism with orthostatic hypotension and autonomic dysfunction). |
A 47-year-old man presents to your clinic complaining of weakness in his hands. He states that he has been frequently dropping objects and is unable to perform fine motor tasks. Physical examination reveals a positive Babinski sign, hyperreflexia, atrophy, diminished strength in the muscles of the hands and calves, and fasciculations. You fear that this patient has a progressive condition, which will ultimately result in his death from respiratory failure in the near future.
Amyotrophic Lateral Sclerosis

Etiology and Epidemiology
Etiology of sporadic ALS unknown; 5%–10% of cases are familial with autosomal dominant inheritance of a defect on chr 21 or with a defect in SOD-1 (gene product involved in scavenging free radicals)

Most commonly affects **men over the age of 40**

Pathology
Progressive disease associated with **loss of both upper and lower motor neurons**

Spinal cord: **Reduced number of anterior horn neurons with reactive gliosis; degeneration of corticospinal tract neurons**

Muscle: **Neurogenic atrophy** with target fibers (fibers with dark center area on cross-section)

Clinical Manifestations

<table>
<thead>
<tr>
<th>Lower motor neuron signs:</th>
<th>Atrophy of muscles; fasciculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper motor neuron signs:</td>
<td>Hyperreflexia; positive Babinski sign; spasticity</td>
</tr>
</tbody>
</table>

Lower and upper motor neuron degeneration tends to present initially with weakness of hands or cramping and spasticity of arms and legs. Involvement of respiratory muscles leads to lung infections and eventually death.

Treatment and Prognosis
Supportive care.

Death from respiratory failure usually occurs **within 5 years of diagnosis**

Notes
Werdnig-Hoffmann syndrome is an autosomal recessive disease that affects the lower motor neurons and is associated with degeneration of anterior horns. It presents at infancy with tongue fasciculations and “floppy baby”.

211
A 74-year-old woman is brought to the emergency department after developing left-sided paralysis 1 hour ago. Further evaluation reveals left-sided sensory and motor paralysis, left-sided hyperreflexia, left-sided Babinski reflex, and bilateral symmetric loss of vision in half of her visual fields. When you hear that she has a history of atherosclerosis, you become even more certain of your diagnosis. After obtaining a CT scan of the head to confirm that she does not have a head bleed, you immediately begin to administer thrombolytic therapy.
Ischemic Stroke

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Causes include thrombosis, embolism, dissection, vasculitis, or hypotension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Cerebral infarction: Associated with thrombosis or embolism; ischemic neuronal change (nuclear pyknosis, eosinophilic cytoplasm) within 12 hours; microglia and monocyte infiltration within 2 days; liquefactive necrosis leading to fluid-filled cavity and reactive astrocytes by 1–3 weeks; gliosis (scar formation) after several months; may convert to hemorrhagic infarction, in which blood seeps into infarction and is reabsorbed</td>
</tr>
<tr>
<td></td>
<td>Watershed infarction: Associated with hypotension; see wedge-shaped infarction occurring at the edge of area supplied by artery; usually occurs in area between ACA and MCA distribution</td>
</tr>
<tr>
<td></td>
<td>Lacunar infarcts: Associated with hypertension and thrombotic obstruction of small vessels; see small cavitations with surrounding gliosis</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Depends on site of ischemia and extent of collateral circulation</td>
</tr>
<tr>
<td></td>
<td>ACA: Sensory loss and weakness in contralateral leg</td>
</tr>
<tr>
<td></td>
<td>MCA: Contralateral paralysis and sensory loss; homonymous hemianopia (bilateral symmetric loss of vision in half of visual field); aphasias</td>
</tr>
<tr>
<td></td>
<td>PCA: Contralateral sensory disturbance; macular-sparing homonymous hemianopia</td>
</tr>
<tr>
<td></td>
<td>Lateral striate arteries: Contralateral paralysis</td>
</tr>
<tr>
<td>Treatment</td>
<td>Thrombolytic therapy within 3 hours of onset; antiplatelet therapy (aspirin, dipyridamole); physical therapy; statins for cholesterol-lowering effects</td>
</tr>
<tr>
<td>Notes</td>
<td>Transient Ischemic Attack refers to neurologic deficits caused by cerebral ischemia that resolves within 24 hours and suggests that the patient is at high risk for having a stroke in the near future.</td>
</tr>
</tbody>
</table>
A 67-year-old man presents to the emergency department after passing out on the sidewalk. When he is revived, he complains of a severe headache and nausea. Past medical history is significant for long-standing hypertension. Physical examination reveals right-sided hemiparesis. You think that this man’s condition may be related to his high blood pressure, which may have caused the formation of Charcot-Bouchard microaneurysms. A CT scan of the head confirms your suspicions.
Hemorrhagic Stroke

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Most commonly caused by hypertension; other causes include bleeding disorders, arteriovenous malformations, brain tumors, or amyloid angiopathy</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology:* Chronic hypertension is associated with **Charcot-Bouchard microaneurysms**, which are usually located within the basal ganglia. Rupture of these aneurysms may be the proximal cause of hemorrhage.
Brain: Hemorrhage usually located in **basal ganglia or thalamus**; central area of blood surrounded by edematous brain tissue → edema resolves and reactive astrocytes and macrophages appear at the edge of the injury → gliosis |
| **Clinical Manifestations** | **Impairment of consciousness**; nausea and vomiting; headache; **neurologic deficits** (especially hemiparesis and sometimes hemisensory disturbance) |
| **Treatment** | Reverse any coagulopathies; strict blood pressure control; surgical decompression if necessary for large intracranial hemorrhage |
| **Notes** | 213 |
A 44-year-old woman presents to the emergency department complaining of nausea and the worst headache of her life. Upon further questioning, you learn that she is a heavy smoker and she has a history of poorly controlled hypertension. You decide to perform a lumbar puncture, which reveals blood in the CSF. A CT scan of the head demonstrates blood in the basal cisterns. You immediately admit her to the hospital for a cerebral angiography in order to evaluate for the best treatment of her condition.
Berry Aneurysm and Subarachnoid Hemorrhage

Etiology and Epidemiology
Causes of subarachnoid hemorrhage include **rupture of berry aneurysm**, **trauma**, and arteriovenous malformation. Most **berry aneurysms** occur sporadically, but risk factors include **hypertension**, **cigarette smoking**, coarctation of the aorta, APKD, connective tissue disorders, and neurofibromatosis type 1.

Rupture of berry aneurysms occurs more frequently in **women** and in those **over the age of 40**

Pathology
Subarachnoid hemorrhage: Blood in subarachnoid space; fibrosis, occurring after resolution, may lead to **CSF obstruction**

Berry aneurysm: Often occur at **arterial bifurcations of circle of Willis**; outpouching of arterial wall with intimal thickening and media thinning at neck of aneurysm; media is absent in sac wall

Clinical Manifestations
Subarachnoid hemorrhage: “Worst headache of my life;” nausea and vomiting; loss of consciousness, may have fever or nuchal rigidity, can be fatal

Lab findings: Lumbar puncture reveals **blood in CSF**

Imaging: CT scan demonstrates blood in basal cisterns

Treatment
Surgical repair; supportive care; therapeutic approach depends on cerebral angiography

Notes
Arteriovenous malformations are congenital vascular malformations usually localized to the subarachnoid space, but may extend into brain tissue. They manifest clinically in young adults as seizures or hemorrhage.
A 78-year-old woman is brought to the emergency department by her son because of headaches and altered mental status. He tells you that the patient fell down the stairs 2 weeks ago, but that she appeared fine immediately after the fall. Physical examination reveals bilateral papilledema. When a CT scan of the head reveals a 3-cm crescent-shaped collection of fluid on the right side of the head that crosses suture lines with a 7-mm midline shift, you suspect that her current condition is related to tearing of the bridging veins between the cerebrum and venous sinuses in the dura and you schedule her for immediate surgical drainage of the blood.
Epidural and Subdural Hematoma

| **Etiology** | **Epidural hematoma:** Caused by tearing of middle meningeal artery, middle meningeal vein, or dural sinus, which is often caused by skull fracture
Subdural hematoma: Caused by tearing of bridging veins located between the cerebrum and venous sinuses in the dura, often owing to head injury |
| **Pathology** | **Epidural:** Accumulation of blood between dura and skull leading to cerebral compression
Subdural: Accumulation of blood between the dura and arachnoid; bleeding is self-limited, but hematoma can grow owing to osmotic movement of water; resolution with granulation tissue can occur as well leading to a chronic subdural hematoma |
| **Clinical Manifestations** | **Epidural:** Loss of consciousness, followed by lucid period, followed by headache, altered mental status, seizures, focal neurologic deficits, and eventually coma. *Imaging:* Head CT shows biconcave disk that does not cross suture lines.
Subdural: Headache; altered mental status; other signs of cerebral compression; clinical signs occur gradually, appearing hours to weeks after injury. *Imaging:* Head CT shows crescent-shaped disk that crosses suture lines. |
| **Treatment** | Surgical drainage of blood; reversal of coagulopathy |
| **Notes** | 215 |
A 43-year-old woman presents to the emergency room complaining of episodic loss of vision. She also reports having had severe headaches associated with nausea and vomiting over the past month. Physical examination reveals bilateral papilledema and a CT scan of the head demonstrates dilation of the ventricular system of the brain. You suspect that she may need placement of a ventriculoperitoneal shunt to treat her condition and you admit her to the hospital to obtain neurosurgical consultation.
Hydrocephalus

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by accumulation of increased volume of CSF within the cranium, which can either result from obstruction to the CSF circulation (attributed to tumors or inflammation) or from overproduction of CSF by tumors of the choroid plexus</th>
</tr>
</thead>
</table>
| **Pathology** | *Gross:* Dilation of ventricles
Four variants of hydrocephalus:
1. **Internal:** excessive CSF is present only in ventricular system;
2. **External:** excessive CSF is present only in subarachnoid space;
3. **Communicating:** CSF flows freely between ventricles and subarachnoid space;
4. **Noncommunicating:** CSF flow between ventricles and subarachnoid space is obstructed |
| **Clinical Manifestations** | May present with **enlargement of the skull** in adults, seizures, headaches, visual disturbances, nausea and vomiting, and other signs of **increased intracranial pressure** |
| **Treatment** | Insertion of ventriculoperitoneal shunt; removal of obstruction or choroid plexus tumor |
| **Notes** | **Hydrocephalus ex vacuo** refers to the dilation of the ventricles with an increase in CSF volume resulting from a loss of brain tissue (often by infarction or Alzheimer disease). |
A 25-year-old woman presents to your office complaining of diminished sensation in both arms. Further neurologic evaluation of her arms reveals that she has diminished pain and temperature sensation, but that her touch sensation and proprioception are intact. She demonstrates no other neurologic deficits. When an MRI reveals cystic dilation in the center of the cervical spinal cord, you refer her to a neurosurgeon for treatment of her condition.
Syringomyelia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Often associated with Arnold-Chiari malformation; also caused by intraspinal neoplasms or trauma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Spinal cord: Formation of fluid-filled cavity often extending from central canal usually in cervical region of cord (most commonly C7-T1); results in destruction of adjacent gray and white matter (the crossing fibers of spinothalamic tract) with resultant reactive gliosis</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Loss of pain and temperature sensation of upper extremities usually with preservation of touch and proprioception; may eventually progress to involve motor and other sensory tracts</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgical drainage of cavity</td>
</tr>
<tr>
<td>Notes</td>
<td>217</td>
</tr>
</tbody>
</table>
A 32-year-old woman presents to your office complaining of intermittent double vision. She tells you that this tends to occur in the afternoons and evenings. Physical examination reveals ptosis of both eyes that worsens when the patient is asked to actively keep her eyelids elevated. When her symptoms markedly improve after edrophonium administration, you wonder if she may also have a thymoma.
Myasthenia Gravis

Etiology and Epidemiology
Caused by **antibodies directed against the acetylcholine receptors at the neuromuscular junction**
Presents most frequently in **women** under the age of 40

Pathology and Pathophysiology
Neuromuscular junction: Loss of acetylcholine receptors; infiltration of immune complexes and complement factors

Pathophysiology: Antibodies lead to acetylcholine receptor degradation, thereby causing a virtual block of synaptic transmission

Clinical Manifestations
Muscle weakness that worsens with fatigue; common initial presentation is **ptosis** or **diplopia** owing to extraocular muscle involvement, but also involves muscles of the extremities and facial muscles. Diagnosis confirmed by improvement after administration of a short-acting anticholinesterase (edrophonium). Associated with **thymoma** or thymic hyperplasia.

Lab findings: Antibodies to acetylcholine receptors

Treatment
Anticholinesterase drugs (ie, pyridostigmine); thymectomy; immunosuppression; plasmapheresis if severe flare

Notes
A 10-year-old boy is brought to your pediatric neurology clinic by his parents who have noticed that he has self-limited periods of unresponsiveness, even though his eyes are open. When questioned, the patient states that he sees flashes or blinking lights at times and has momentary lapses of “forgetfulness.” The parents report that their other child had similar episodes, but the episodes subsided after puberty. You inform the parents that you believe their child may have a mild form of epilepsy. You order an EEG, which you expect will demonstrate a classic 3-Hz spike-and-wave EEG pattern.
Seizures

Etiology
Causes for seizures include toxins (i.e., drugs, alcohol withdrawal), **intracranial pathology** (stroke, bleed, tumor, infection, degenerative disorders), metabolic abnormalities (hyponatremia, hypoglycemia) or **epilepsy** (syndrome of recurrent seizures).

Pathophysiology
Abnormal discharge of CNS neurons results in neurological symptoms.

Clinical Manifestations
Usually preceded by **aura** (odd smell/vision), then followed by seizure (see types below); seizure often followed by **postictal period** (minutes to hours of resolving confusion and lethargy).

Seizures may be either partial (involving discrete area of brain) or generalized and include:
1. **Simple partial**: no impairment of consciousness; involves motor, sensory, or autonomic brain;
2. **Complex partial**: similar to simple partial except that consciousness impaired;
3. **Tonic-clonic (grand mal)**: contraction of muscles alternating with relaxation;
4. **Absence**: lapse of consciousness without loss of postural tone;
5. **Myoclonic**: sudden, brief contractions.

Treatment
Antiepileptic drugs; treat underlying causes.

Notes
Status epilepticus refers to a continuous tonic-clonic seizure for over 30 minutes. Complications include anoxic brain injury and lactic acidosis.
A 21-year-old man presents to the emergency department complaining of a severe headache. Physical examination reveals a fever to 102°F, nuchal rigidity, and photophobia. You perform a lumbar puncture, which initially reveals purulent CSF infiltrated with neutrophils, increased protein content, and decreased glucose content. While you await culture results, you admit the patient to the hospital and begin empiric broad spectrum antibiotics to treat his condition.
Pyogenic and Viral Meningitis

| Etiology | **Pyogenic meningitis:** Causes include group B streptococci, *E.coli*, *Listeria* in neonates and infants; *H.influenzae* and *N.meningitidis* in children and young adults; pneumococcus, *Listeria*, and gram-negative rods in older adults
Viral meningitis: Causes include HSV virus, coxsackie virus, echoviruses, and arboviruses |
| --- | --- |
| Pathology | **Pyogenic meningitis:** Purulent exudate within leptomeninges; engorged meningeal vessels; neutrophils within the subarachnoid space
Viral meningitis: There may be no abnormality or a mild lymphocytic infiltrate in subarachnoid space; mild edema may be present |
| Clinical Manifestations | **Pyogenic meningitis:** Headache; photophobia; neck stiffness; fever; irritability. *Lab findings:* Lumbar puncture shows cloudy CSF with neutrophils, increased protein, decreased glucose and increased opening pressure.
Viral meningitis: Headache; photophobia; neck stiffness; fever; irritability. *Lab findings:* Lumbar puncture shows lymphocytosis, mildly elevated protein, and normal glucose. |
| Treatment | **Pyogenic meningitis:** Antibiotics and supportive care
Viral meningitis: Self-limiting illness; acyclovir for HSV meningitis |
| Notes | **Viral encephalitis** refers to infection of the brain and/or meninges (meningoencephalitis). It can be caused by many organisms, including arboviruses, herpes, cytomegalovirus, rabies, and poliovirus. Histopathologically, glial nodules, inclusion bodies in neurons, and perivascular mononuclear cell infiltrates are seen. |
A 5-year-old boy presents to your office complaining of diminished vision and eye pain in his left eye. Physical examination reveals strabismus and a cat’s eye pupillary reflex. Funduscopic examination suggests an intraocular mass. When you hear that the boy’s father has had eye neoplasms, you order an MRI of the orbits and also refer this patient to both an oncologist and a medical genetics clinic. You fear that this boy may develop other cancers later in life.
Retinoblastoma

| **Etiology** | Caused by **homozygous deletion** in both alleles of **RB gene**, a tumor-suppressor gene located on **chr 13**, which results in a tumor arising from neuroepithelial cells in retina. Can be either **familial** or **sporadic**. Familial form is transmitted as **autosomal dominant trait** even though homozygosity is necessary for disease. Over 90% of heterozygous carriers end up developing disease. |
| **Pathology** | **Retina:** Round cells with hyperchromatic nuclei and little cytoplasm arranged in **Flexner-Wintersteiner rosettes** (cuboidal cells positioned around central lumen)
May metastasize to the brain, spinal cord, bone, or lymph nodes |
| **Clinical Manifestations** | Classically occurs in **young children** (familial form) who present with **diminished visual acuity**, **eye pain**, strabismus, intraocular mass on funduscopic examination, and **white cat’s eye pupillary reflex**
Patients with familial disease develop bilateral retinoblastoma and are at an increased risk for developing other cancers (eg, osteosarcoma) |
| **Treatment and Prognosis** | Surgery (removal of tumor or eye if necessary) and radiation
Tumor is fatal once it has spread beyond eye |
| **Notes** | Prototype of **Knudson two-hit hypothesis:** Two mutations are required for disease. One deletion is either inherited (familial) or occurs sporadically. The second mutation results from a sporadic mutation in both familial and sporadic cases. |
A 59-year-old man presents to your office complaining of severe headaches for the last week. He tells you that his headaches are often associated with projectile vomiting. Physical examination reveals bilateral papilledema and a CT scan of the head demonstrates an irregular mass in the left cerebral hemisphere. When a CT-guided brain biopsy demonstrates pseudopalisading malignant cells around areas of necrosis, you realize that this patient’s prognosis is very poor.
Glioblastoma Multiforme

Etiology and Epidemiology
Associated with genetic mutations in several oncogenes and tumor-suppressor genes, including p53 and the *RB* gene.

Most common primary brain neoplasm

Occurs most frequently in people between the ages of 40 and 60.

Pathology

Gross: Variable, noncircumscribed lesion found in cerebral hemisphere

Microscopic: High-grade astrocytoma (arises from astrocytes); **central areas of necrosis** and hemorrhage surrounded by multiple tumor cells, arranged in a **pseudopalisading** fashion; high degree of **anaplasia**

Clinical Manifestations

Seizures; headaches; nausea and vomiting; other signs of increased intracranial pressure

Imaging: Mass effect, cerebral edema

Treatment and Prognosis

Surgical resection with chemotherapy and radiation

Prognosis is very poor with most patients dying within a year of diagnosis

Notes

Low-grade astrocytomas, especially **pilocytic astrocytomas**, are benign, slow-growing tumors occurring in the cerebellum of children. On histology, Rosenthal fibers (eosinophilic, corkscrew fibers) are present.
A 42-year-old woman presents to your office complaining of headaches and vomiting over the past 4 months. Upon further questioning, you learn that she also feels as if she trips more than usual when she is walking and she has recently had more trouble remembering things. A physical examination reveals bilateral papilledema and reduced strength and hyperreflexia in both of her legs. A CT scan reveals a parasagittal mass compressing the brain and a CT-guided brain biopsy demonstrates a whorled pattern of tumor cells with psammoma bodies. You tell the patient that she will most likely need surgery to remove the tumor.
Meningioma

| Etiology and Epidemiology | Benign, slow-growing tumor arising from meningotheial cells of the **arachnoid**; therefore, it is external to the brain.
| | Multiple meningiomas can be present in patients with neurofibromatosis type 2.
| | Occurs most often in **women** after the age of 30. |
| Pathology | *Gross:* Usually round **encapsulated mass** with dural base; usually occurs in the convexities of the cerebral hemispheres or the parasagittal region; usually **does not infiltrate brain.**
| | *Microscopic:* **Whorled pattern** of tightly packed tumor cells; **psammoma bodies** (laminated calcifications). |
| Clinical Manifestations | Symptoms associated with **compression of underlying brain**, including **seizures, headaches, nausea, vomiting**, and other signs of increased intracranial pressure. |
| Treatment and Prognosis | Surgical removal of tumor.
| | Prognosis is good. |
| Notes | Meningiomas are the second most common primary brain tumors. |
A 49-year-old man presents to the emergency department with a seizure. When he has been stabilized, he tells you that he has had several severe headaches over the past couple of months. A CT scan of his head reveals a large mass in the frontal lobe of his brain that demonstrates areas of calcification. You admit him to the neurology service and you suspect that he will need surgery to treat his condition.
Oligodendroglioma

| **Etiology and Epidemiology** | Relatively rare benign tumor derived from oligodendrocytes
Commonly affects middle-aged people |
|-----------------------------|---|
| **Pathology** | *Gross:* Circumscribed, slow-growing gray mass often with cysts; usually occurs in white matter of cerebral hemispheres (especially frontal lobe)
Microscopic: Sheets of uniform cells with round nuclei with clear cytoplasm (fried egg appearance); often calcification is present; increased vascularity |
| **Clinical Manifestations** | Seizures; headaches; papilledema; other signs of increased intracranial pressure
Imaging: Calcification of tumor is detected on CT scan |
| **Treatment and Prognosis** | Surgical resection, followed by radiotherapy and chemotherapy
Average survival time is 5–10 years after diagnosis |
| **Notes** | |
A 58-year-old woman presents to your clinic complaining of hearing loss and a ringing in her left ear. The Weber and Rinne hearing tests help you to determine that the hearing loss is caused by a sensory disturbance and not a conduction deficit. You send the patient for an MRI of her head, which reveals a mass at the left cerebellopontine angle, impinging on cranial nerve VIII. You refer this patient to a neurosurgeon for a biopsy and likely removal of the mass.
Schwannoma

| **Etiology** | Usually benign tumors arising from Schwann cells
Bilateral acoustic schwannomas are associated with neurofibromatosis type 2 |
| **Pathology** |
Gross: Encapsulated masses, often with cystic areas; usually occur in the cerebellopontine angle, where it can compress cranial nerve VIII (acoustic schwannoma)
Microscopic: Two growth patterns: (1) **Antoni A:** tightly packed elongated cells with palisading nuclei; (2) **Antoni B:** loose arrangement of cells with microcysts |
| **Clinical Manifestations** | Presents with symptoms associated with compression of involved nerve (cranial nerve VIII compression leads to patients presenting with ipsilateral hearing loss, tinnitus, and vertigo), seizures, headaches, nausea and vomiting, and other signs of increased intracranial pressure |
| **Treatment and Prognosis** | Surgical resection of tumor
Prognosis is good |
| **Notes** | Pineal tumors usually occur in young men between the ages of 10 and 40. They present with Parinaud syndrome (paralysis of upward gaze caused by pretectal and superior colliculus damage, obstructive hydrocephalus [owing to compression of aqueduct of Sylvius], and endocrine abnormalities [owing to compression of hypothalamus]). |
A 6-year-old boy presents to his pediatrician’s office complaining of frequent falls. Upon further questioning, you learn that the boy has also been suffering from nausea and vomiting, which is usually associated with headaches. During physical examination, you note that the boy has an ataxic gait and bilateral papilledema. You send the boy for a CT scan, which reveals a mass in the cerebellum and dilated third and lateral ventricles. You immediately refer the patient to a neurosurgeon.
Medulloblastoma

| Etiology and Epidemiology | Highly **malignant tumor** arising in **cerebellum**; associated with deletion on short arm of chr 17 (17p-)
| | Occurs mostly in **children** and accounts for **20% of all brain tumors in children**
| Pathology | **Gross:** Gray, well-circumscribed tumor located at midline of cerebellum
| | **Microscopic:** Hypercellular sheets of **anaplastic cells**, demonstrating many mitoses, scant cytoplasm, and hyperchromatic nuclei; cells are often arranged in a **rosette or perivascular pseudorosette formation**
| Clinical Manifestations | Unsteady gait; obstructive hydrocephalus (tumor may obstruct flow of CSF by compressing fourth ventricle); **seizures, headaches**; nausea and vomiting; other signs of increased intracranial pressure
| Treatment and Prognosis | Surgery with radiation and chemotherapy
| | With total excision and radiation, 5-year survival rate is **75%**
| Notes |
An 8-year-old girl presents to your clinic complaining of blurry vision. During physical examination, you note bilateral papilledema. A CT scan of the head demonstrates a mass extending from the floor of the fourth ventricle and dilated lateral and third ventricles. You suspect that a biopsy of the mass would demonstrate cells with blepharoplasts in a perivascular pseudorosette arrangement.
Ependymoma

Etiology and Epidemiology
Tumor arising from ependyma of the ventricular system
Most commonly occur in **children** (usually in the **fourth ventricle**), but can occur in the spinal cord of adults

Pathology
Gross: Solid, papillary masses extending from floor of fourth ventricle
Microscopic: Uniform cells with round nuclei set in a fibrillary stroma and arranged in a **perivascular pseudorosette formation**; tumor cells often have **blepharoplasts** (rod near nucleus, which represents basal ciliary bodies)

Clinical Manifestations
Obstructive hydrocephalus (tumor may obstruct flow of CSF through compression of fourth ventricle); **seizures; headaches; nausea and vomiting; other signs of increased intracranial pressure**

Treatment and Prognosis
Surgical excision (difficult owing to proximity of brainstem nuclei)
Prognosis is poor with average survival time of 4 years

Notes
A 2-year-old boy is brought to your office after his parents noticed a large abdominal mass while dressing him. They also remark that he seems to have lost weight over the past month. During physical examination, you note ecchymoses over his trunk, a large palpable abdominal mass, and a blood pressure of 160/100. Laboratory tests reveal an elevation of urinary VMA and catecholamines and a CT scan of the abdomen demonstrates a large mass arising from the right adrenal gland. When a biopsy of the mass reveals Homer-Wright pseudorosettes, you suspect that the amplification of a specific oncogene may be responsible for his condition.
Neuroblastoma

Etiology and Epidemiology

Tumor arising **from neural precursor cells**; associated with **amplification of the N-myc oncogene and deletions in short arm of chr 1 (1p-)**

Most commonly seen in **young children**, but does rarely occur in adults

Pathology

Gross: Classically arises in the **adrenal medulla**, but can arise in the sympathetic chain, pelvis, neck, or brain; variable in size; may be circumscribed; may show cyst formation or necrosis

Microscopic: Sheets of small cells with dark nuclei and scant cytoplasm often arranged in **Homer-Wright pseudorosettes**; neurosecretory granules containing catecholamines

Clinical Manifestations

Classic presentation is **young child** (< 2 years old) with **large abdominal mass, hypertension**, and **weight loss**. Other symptoms include ecchymosis and proptosis (protrusion of eyes)

Older children may present with symptoms of metastases to bone, liver, or lungs (manifesting as bone pain, respiratory, or GI symptoms)

Lab findings: **Increased 24-hour urinary VMA** and metanephrine levels, **increased** plasma and urinary **catecholamine levels**

Treatment and Prognosis

Surgical resection with chemotherapy

Prognosis is variable; younger age of patient and lower stage of cancer at diagnosis has a better prognosis

Notes
A 14-year-old girl presents to your clinic complaining of multiple nodules on her skin. She tells you that her mother suffers from a similar condition. Upon further examination, you find multiple coffee-colored macules on her torso and limbs and pigmented nodules on her irises. You suspect that her condition is caused by an autosomal dominant genetic disorder and you refer her to a medical genetics clinic.
Neurofibromatosis Type 1

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Autosomal dominant disorder that is caused by a mutation in the neurofibromatosis type 1 (NF1) gene, a tumor suppressor gene located on chr 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Neurofibroma: Unencapsulated, well-circumscribed masses of spindle cells, which occur in the dermis (cutaneous), in the peripheral nerve (solitary), or in a large nerve trunk (plexiform); cutaneous neurofibromas are visible as skin nodules and may cause hyperpigmentation of overlying skin</td>
</tr>
<tr>
<td>Clinical</td>
<td>Neurofibromas may cause neurologic symptoms (eg, gliomas of the optic nerve may lead to visual disturbances)</td>
</tr>
<tr>
<td>Manifestations</td>
<td>Lisch nodules: Pigmented nodules of the iris</td>
</tr>
<tr>
<td></td>
<td>Café-au-lait spots: Cutaneous pigmented macules</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgery to remove neurofibromas if disfiguring or causing neurologic abnormalities</td>
</tr>
<tr>
<td>Notes</td>
<td>Neurofibromatosis type 2 is an autosomal dominant disorder that is caused by a mutation in the neurofibromatosis type 2 (NF2) gene, located on chr 22. It is rarer than neurofibromatosis type 1 and presents with bilateral acoustic schwannomas, multiple meningioma, and other neoplasms.</td>
</tr>
</tbody>
</table>
Disorders of the Musculoskeletal System

Disorders of Muscle
- Duchenne Muscular Dystrophy
- Myotonic Dystrophy

Disorders of Bone
- Congenital Abnormalities
 - Osteogenesis Imperfecta
 - Osteopetrosis
- Metabolic and Nutritional Disorders
 - Osteoporosis
 - Paget Disease of the Bone
 - Rickets and Osteomalacia
 - Scurvy
- Neoplasms
 - Osteochondroma
 - Giant Cell Tumor
 - Osteosarcoma
 - Ewing Sarcoma

Disorders of the Joint
- Seronegative Spondyloarthropathies
- Rheumatoid Arthritis
- Osteoarthritis
- Gout

Disorders of Connective Tissue
- Systemic Lupus Erythematosus
- Sjögren Syndrome
- Systemic Sclerosis
- Myositis
Musculoskeletal System

COMPONENTS OF A SYNOVIAL JOINT

• Articular Cartilage: covers and protects articular surface of long bones
• Fibrous Capsule and Ligaments: maintains position of long bones in joint
• Synovial Membrane: forms the boundary of the joint space; attached to fibrous capsule
• Synovium: inner surface of synovial joint capsule
• Synovial Fluid: formed by synovium; serves to lubricate movement of articular surfaces

STRUCTURE OF BONE

• Composition of Bone
 → Cellular component
 → Osteoblasts: Large cells with basophilic cytoplasm; lay down osteoid
 → Osteocytes: Inactive osteoblasts trapped within formed bone; small cells with dark nuclei
 → Osteoclasts: Multinucleated cell with “ruffled border;” resorbs bone
 → Osteoid (type I collagen matrix) which becomes mineralized by deposition of calcium hydroxyapatite
• Arrangement of Bone
 → Rigid outer shell of compact bone (cortex) surrounding central medullary area filled with thin bone trabeculae and hematopoietic marrow
A 2-month-old baby boy is brought to the emergency department by his adoptive parents, who tell you that their baby has been fussy and seems to cry whenever his left arm is touched. On physical examination, you notice hypoactivity of the baby’s left arm. You order an x-ray of the baby’s arm, which reveals multiple fractures. You decide to order multiple radiographs of the skull, chest, and all extremities looking for evidence of other fractures. On closer physical examination, you do not see any abnormal bruising of the trunk, back, or buttocks, making child abuse less likely, but you do observe that the child has blue sclerae. You begin to suspect that his condition may be related to a deficiency in type 1 collagen.
Osteogenesis Imperfecta

Etiology
Caused by inherited mutations resulting in **deficient synthesis of type 1 collagen**, which comprises bone, teeth, ears, eyes, and skin. Inheritance is mostly **autosomal dominant**, but some forms are autosomal recessive. There are four variants with type II being most severe, and usually resulting in perinatal death.

Pathology
Bone: Marked cortical thinning; **thinning of trabeculae** similar to osteoporosis

Clinical Manifestations
Multiple fractures occurring from minimal trauma; **blue sclerae** (owing to translucency of connective tissue over choroids); hearing loss (owing to abnormal middle ear bones); dental imperfections

Treatment and Prognosis
Pneumatic bracing; avoidance of trauma
Prognosis depends on form of disease and ranges from death in infancy to normal life span

Notes
Achondroplasia is caused by an autosomal dominant mutation in the fibroblast growth factor receptor 3 (*FGFR3*) gene located on chr 4, resulting in abnormalities in cartilage calcification and remodeling. It is clinically manifest as **dwarfism** (short limbs with normal trunk) and is characterized by narrow epiphyseal plates with short, thick bones.
A 15-year-old boy presents to the emergency department with suspected fractures of the left tibia and fibula following a fall. He tells you that he has broken several bones in the past and that his mother has a bone disease. Physical examination reveals slight hearing loss, facial asymmetry, and hepatosplenomegaly. Laboratory tests demonstrate anemia and an x-ray of his left leg shows fractures of both the tibia and fibula as well as an Erlenmeyer flask deformity. As you set this patient’s leg in a cast, you suspect that his condition is associated with defective osteoclasts.
Osteopetrosis

| **Etiology** | Dysfunction of osteoclast activity, which results in defective bone resorption
There are multiple variants, including a fatal autosomal recessive type and a less severe autosomal dominant type |
|---|---|
| **Pathology** | *Gross:* Widened ends of bones (*Erlenmeyer flask*); thick, dense bones
Microscopic: Persistence of primary spongiosa, which is calcified cartilage formed during endochondral bone development; lack of trabeculae or hematopoietic marrow |
Clinical Manifestations	Multiple fractures; anemia (owing to lack of bone marrow); infections; hepatosplenomegaly (owing to extramedullary hematopoiesis); cranial nerve palsy (blindness, deafness, facial paralysis), and other neuropathies (owing to narrowed neural foramina, which cause nerve compression)
Treatment	Corticosteroids; bone marrow transplant
Notes	**McCune-Albright syndrome** is a disorder that occurs in young girls. It manifests with café-au-lait spots, precocious puberty, short stature, and polyostotic fibrous dysplasia (fibrous replacement of medullary bone in multiple locations).
A 68-year-old woman presents to your office complaining of aching lower back pain. Upon directed history, she tells you that she feels that she is getting shorter and you note that she is slightly hunched forward. An x-ray of her spine reveals a compression fracture of the L4 vertebra. When a bone density scan reveals decreased bone mass, you prescribe her a bisphosphonate as well as calcium and vitamin D supplements to treat her condition.
Osteoporosis

Etiology and Epidemiology
Defective bone synthesis or increased bone reabsorption, resulting in a **decrease in bone mass**; associated with **endocrine abnormalities** (*estrogen deficiency* in menopause, *Cushing*, hyperthyroidism, *calcium deficiency*), **physical inactivity**, genetic bone disorders, anorexia, and liver disease. Most commonly seen in Caucasian elderly **women**.

Pathology
Bone: Qualitatively normal but with **thinner and fewer trabeculae**; thin cortex; widened Haversian systems.

Clinical Manifestations
Back pain; fractures, especially in thoracolumbar spine, hip, or femur; loss of height with kyphosis (owing to vertebral compression fractures).

Imaging: Diffuse radiolucency on radiograph; bone density studies (DEXA) show **decreased bone mass**.

Treatment
Bisphosphonates (inhibit osteoclast bone resorption); estrogen replacement (controversial); exercise; **calcium and vitamin D supplements**.

Notes
A 74-year-old man presents to your clinic complaining of bone pain in his left thigh. He also states that his hearing has deteriorated significantly over the last 6 months. Direct questioning reveals that he has noticed an increase in his hat size. Laboratory results demonstrate an increased serum alkaline phosphate with normal calcium, phosphorus, and PTH levels. An x-ray of his left thigh shows mixed thickening and lucency of the bone. You worry that this patient’s condition may put him at risk for osteosarcoma and high-output cardiac failure.
Paget Disease of Bone

Etiology
Caused by an **increase of both osteoblastic and osteoclastic activity**, which is probably caused by a **viral infection** (perhaps paramyxovirus)

Pathology
Gross: Can occur in one bone (**monostotic**) or multiple (**polyostotic**) and tends to involve the skull, pelvis, femur, tibia, and spine

Microscopic: Several morphologic stages in bone: (1) **Osteolytic:** large osteoclasts with multiple resorption pits; (2) **Osteoclastic osteoblastic:** mosaic pattern of lamellar bone demonstrating both bone destruction and bone formation, both osteoclasts and osteoblasts seen; (3) **Late osteosclerotic:** sclerotic bone with predominance of thick trabeculae, dark mosaic lines evident

Clinical Manifestations
Bone pain and **bone growth** (increase in hat size)

Complications include **high-output cardiac failure** (increased vascularity results in numerous arteriovenous shunts), **osteosarcoma, hearing loss** (owing to narrowing of auditory foramen), and **long bone fractures**

Imaging: Mixed thickening and lucency of bone

Lab findings: **Increased serum ALP**, normal serum calcium and phosphorus, normal PTH levels

Treatment
Bisphosphonates (inhibit osteoclastic activity) for symptomatic disease

Notes
A 5-year-old boy is brought to your office by his parents, who are concerned about skeletal deformities. Physical examination reveals a short boy with protrusion of the sternum, thinning of the occipital and parietal bones resulting in a squared appearance of the head, and the rachitic rosary. His parents tell you that he is well nourished, plays outside a lot, and has had no prior medical problems. You advise that the boy begin taking vitamin supplements and you schedule further tests to try and determine the etiology of this boy’s condition.
Rickets and Osteomalacia

| **Etiology** | Caused by **vitamin D deficiency**, which can be caused by malnutrition, inadequate sunlight exposure, malabsorption (owing to pancreatic insufficiency, liver disease, inflammatory bowel disease), or renal disease (owing to defect in renal synthesis of 1,25(OH$_2$) D)

Other causes include dietary calcium deficiency, phosphate deficiency, or aluminum toxicity.

Rickets refers to the disease in childhood; **osteomalacia** refers to the disease in adulthood.

| **Pathology and Pathophysiology** | *Pathophysiology:* Vitamin D deficiency → decreased Ca$^{2+}$ absorption → **decreased calcification of osteoid matrix**

Bone: Increased unmineralized bone matrix; trabeculae have core of calcified bone, but are surrounded by coat of unmineralized osteoid

| **Clinical Manifestations** | **Rickets:** Skeletal deformities (disruption of mineralization at epiphyses); **shortened stature;** pigeon breast (sternum protrusion); **rachitic rosary** (costochondral junction thickening); late closing of fontanelles; **craniotabes** (thinned occipital and parietal bones)

Osteomalacia: Diffuse bone pain; muscle weakness. *Imaging:* Diffuse radiolucency with thinning of cortical bone on radiograph

Lab findings for both Rickets and Osteomalacia: Decreased calcium and phosphate levels

| **Treatment** | Vitamin D supplements; treatment of underlying cause |

| **Notes** | When osteomalacia occurs because of vitamin D deficiency and secondary hyperparathyroidism owing to renal disease, it is called **renal osteodystrophy.** |
A 6-year-old homeless girl is brought to your clinic complaining of left knee pain. Further inspection reveals a thin, malnourished girl with a swollen left knee consistent with hemarthrosis, multiple purpura, and gingival swelling. Her mother tells you that the girl has not been eating a well-balanced diet because of their financial situation. When laboratory tests demonstrate anemia, you suspect that this patient’s condition may be related to a nutritional deficiency and you recommend vitamin supplements.
Scurvy

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by vitamin C deficiency, usually owing to inadequate intake</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology:* Vitamin C deficiency \rightarrow **impaired collagen synthesis** \rightarrow **decreased osteoid matrix formation** by osteoblasts
Bone: **Decreased osteoid matrix; cartilaginous overgrowth** with epiphyseal cartilage not being replaced by osteoid |
| **Clinical Manifestations** | **Subperiosteal hemorrhage; bleeding into joint spaces; purpura and petechiae; bleeding from gums; gingival swelling; fatigue; weakness; anemia; impaired wound healing**
Lab findings: **Decreased plasma ascorbic acid**, decreased Hct |
| **Treatment** | Vitamin C supplements |
| **Notes** | |
A 19-year-old boy presents to the emergency department complaining of right lower thigh pain following a fall. An x-ray of his right thigh reveals a fracture in a stalk of bone growth protruding from the end of his femur. Although you believe the growth to be benign and caused by an autosomal dominant trait, you order a bone biopsy to rule out malignancy. You expect that the histology examination of the biopsy will reveal endochondral ossification over the medullary cavity with no atypia.
Osteochondroma

| Etiology and Epidemiology | Results from **displacement of lateral part of growth plate**, causing proliferation of bone away from long axis
Multiple lesions occur in **multiple hereditary exostosis**, an autosomal dominant disease
Most common in **men < 25 years old** |
|---|---|
| **Pathology** | **Gross:** Usually develops in metaphysis of **femur or tibia; stalk of bone growth covered by cartilage cap projecting from bone**
Microscopic: **Endochondral ossification** leads to newly synthesized bone covering medullary cavity that forms core of stalk; **hyaline cartilage over new bone** |
| **Clinical Manifestations** | **Bone pain** caused by fracture of stalk or nerve impingement; rarely, it may transform to chondrosarcoma
Imaging: Radiographs demonstrate stalk of bone growth |
| **Treatment** | Surgery if necessary |
| **Notes** | Osteochondroma is the most common benign tumor of bone.
Osteoid osteoma and **Osteoblastoma** are benign tumors derived from osteoblasts. Osteoid osteomas tend to arise in the femur or tibia, while osteoblastomas tend to arise in the spine. These lesions most commonly present as bone pain in men under the age of 25. |
A 32-year-old woman presents to your office complaining of pain in her right knee joint. Physical examination does not reveal any evidence of infection. Radiographs of the knee demonstrate a mass with a characteristic soap bubble appearance. You reassure the patient that this mass is probably benign, but you suspect that there is a good chance of recurrence even after surgical excision.
Giant Cell Tumor

| **Etiology and Epidemiology** | Benign tumor derived from monocytes
Most commonly affects **women** between the ages of **20 and 40** |
|-------------------------------|--|
| **Pathology** | *Gross:* Most commonly arises from **epiphyses of long bones especially around the knee (distal femur, proximal tibia);** large and red brown; often see cystic degeneration or necrosis and hemorrhage
Microscopic: **Uniform oval mononuclear cells** demonstrating many mitoses; spindle-shaped **osteoclast-type giant cells** with up to 100 nuclei; fibrous stroma |
| **Clinical Manifestations** | **Joint pain** and other arthritic symptoms; fractures
Imaging: **Soap bubble or double bubble** appearance on radiograph |
| **Treatment and Prognosis** | Surgical excision
Very rarely becomes malignant, but is still aggressive and **recurs after treatment 40%–60% of the time** |
| **Notes** | **Enchondroma** is a benign cartilaginous neoplasm arising from the intramedullary bone and is most commonly seen in the hands and feet. Enchondromas are often asymptomatic and found incidentally on radiograph (characteristic “*O ring sign*” on x-ray), but they may be painful and cause a fracture. |
A 13-year-old boy presents to your office complaining of pain and swelling in his left knee. He denies any trauma to the knee and has no fever to suggest an infectious process. Laboratory tests reveal an increased serum alkaline phosphate and an x-ray of the knee shows a mass with a sunburst growth pattern and a periosteal elevation by the mass, commonly called Codman triangle. You suspect he will need chemotherapy and possible surgical resection and you immediately refer the patient to an oncologist.
Osteosarcoma

Etiology and Epidemiology
Tumor derived from **malignant osteoblasts**, which synthesize bone
Risk factors include Paget disease of the bone, fibrous dysplasia, ionizing radiation, familial retinoblastoma, bone infarcts, and \(p53 \) mutations
Most frequently occurs in **men** between the **ages of 10 and 20**, although there is a smaller peak of occurrence among the elderly

Pathology
Gross: Arises in **metaphysis** of long bones, especially **around knee** (distal femur, proximal tibia); large, bulky mass containing areas of hemorrhage and cystic degeneration; often destroys overlying cortex and spreads into medullary canal
Microscopic: Multinucleated giant cells; **anaplastic cells; neoplastic osteoid formation**

Clinical Manifestations
Pain and swelling around site; fracture; often metastasizes to the lung, brain, or liver and may present with symptoms of metastasis
Lab findings: **Increased serum ALP**
Imaging: **Codman triangle** (lifting of periosteum), **sunburst growth pattern** on radiograph

Treatment and Prognosis
Chemotherapy; surgical resection or limb amputation
5-year survival rate is 60%

Notes
Osteosarcoma is the **most common primary malignant tumor** of bone.
Chondrosarcoma is a **malignant cartilaginous tumor** that occurs most in **men**, aged 30–60. It most commonly occurs in pelvis, spine, ribs, tibia, and femur.

239
An 11-year-old boy presents to the emergency department complaining of a painful, swollen mass in his right leg. He denies any history of trauma to the leg. Laboratory tests reveal anemia, leukocytosis, and an elevated ESR. An x-ray of the mass demonstrates a lytic tumor with an onion-skin appearance in the medullary cavity of his right femur. You admit this patient to the oncology service and you fear that his prognosis is grim if the mass has metastasized.
Ewing Sarcoma

| **Etiology and Epidemiology** | Associated with chromosomal translocation t (11;22)
Categorized as a **small round blue cell tumor**, but tumor cell origin is unknown
Occurs most frequently in **boys < 15 years old** |
|-----------------------------|--|
| **Pathology** | *Gross*: Arises most often in the medullary cavity of **long bones, pelvis, ribs, and scapula**
Microscopic: Sheets of small, round, blue, **uniform cells** with little cytoplasm; tumor cells may be arranged in **pseudorosette** fashion; necrosis may be apparent |
| **Clinical Manifestations** | **Painful, swollen, enlarging mass**; systemic signs including fever and anemia (**may mimic symptoms of osteomyelitis**)
Imaging: Lytic tumor with **onion-skin** appearance on radiograph
Lab findings: Leukocytosis, elevated ESR |
| **Treatment and Prognosis** | Surgical resection; chemotherapy; radiation
Extremely **aggressive tumor** that is prone to metastasize early; 5-year survival is 70% if localized disease and 30% if metastatic disease |
| **Notes** | 240 |
A 44-year-old woman presents to your office complaining of chronically swollen finger joints over the past 6 months. She tells you that the swelling and pain are usually most severe in the morning, but do resolve within a couple of hours. Physical examination reveals swelling of the PIP and MCP joints of both hands and subcutaneous nodules over both of her elbows. When laboratory results reveal the presence of a specific IgM antibody directed against the Fc fragment of IgG, you begin the patient on NSAIDs and low dose steroids.
Rheumatoid Arthritis

Etiology and Epidemiology
Etiology unknown; it is theorized that an acute arthritis is triggered in genetically susceptible people (HLA-DR4), which causes a chronic autoimmune reaction.

Most common in **women** between 30 and 50 years old.

Pathology

Joint: Initially, lymphocytic infiltration and edema in synovium with formation of villi composed of synovial lining cells; neutrophils in synovial fluid; later, the cartilage is destroyed and replaced with a pannus (fibrocellular granulation tissue). Scarring after inflammation leads to joint deformity.

Rheumatoid nodule: Firm, nontender, subcutaneous nodule; core of fibrinoid necrosis surrounded by palisade of macrophages, lymphocytes, and fibroblasts.

Clinical Manifestations
Symmetric joint swelling with stiffness and pain most commonly involving PIP and MCP joints of the fingers, wrists, knees, and ankles that is most severe in morning and improves with activity; **rheumatoid nodules** usually over bony prominences; characteristic swan-neck deformity (flexion of DIP with extension of PIP joint); **boutonniere deformity** (extension of DIP with flexion of PIP joint); **ulnar deviation of fingers**; joint deformities; fatigue; fever.

Complications include anemia, pericarditis, pulmonary fibrosis, pleuritis, vasculitis, and secondary amyloidosis.

Lab findings: Positive **Rheumatoid factor** (IgM antibody against IgG Fc fragment), positive anti-CCP antibody, increased ESR.

Treatment
Glucocorticoids; NSAIDs; immunosuppressants

Notes
241
A 67-year-old woman presents to your clinic complaining of stiffness and pain in both of her knees. Upon further questioning, she tells you that the pain becomes worse later in the day after she has been walking around. Physical examination reveals bilateral, swollen knees with mild joint effusion and crepitus with flexion. You also notice bony nodules on her DIP and PIP joints. You suspect that her condition is caused by the wear and tear of everyday life.
Osteoarthritis

Etiology and Epidemiology

Destruction of articular cartilage resulting from mechanical trauma to the joints that accumulates over time (*wear-and-tear arthritis*)

Affects **women** more often than men; **age of onset is usually > 50**; associated with obesity

Pathology

Joint: **Joint cartilage flakes off** and is eroded, exposing underlying bone; **eburnation of bone** (polishing of bone due to rubbing of bone with bone); **cystic degeneration** beneath eburnated bone (subchondral cysts); **osteophyte formation** (growth of new bone at articular edges); **joint mice** (fractured osteophytes floating in synovial fluid)

Clinical Manifestations

Joint pain and stiffness that **worsens with use** most commonly occurring in the hip joint, knee joint, lumbosacral spine, MTP joint of the toe, and **DIP and PIP joints of the fingers**; may see **Heberden nodes** and **Bouchard nodes** (osteophytes at the DIP and PIP joints, respectively)

Treatment

NSAIDs; surgical replacement of joint

Notes

Osteoarthritis can be distinguished from rheumatoid arthritis on the basis of location of joint involvement, laboratory tests (normal in osteoarthritis), and description of joint pain (effect of movement on pain).
A 22-year-old man presents to your office complaining of lower back pain and stiffness. Upon further questioning, you discover that he occasionally has sharp pain and burning in his eyes. He denies any recent GI symptoms or illnesses and he is not sexually active. Physical examination reveals pain and limited range of motion of the lower back. When an x-ray of the spine demonstrates sacroiliac joint disease, you begin to suspect that this patient is probably an HLA-B27-positive individual. You prescribe NSAIDs and suggest physical therapy to relieve the stiffness and pain.
Seronegative Spondyloarthropathies

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Epidemiology</th>
<th>Clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylosing Spondylitis</td>
<td>Most common in young men who are HLA-B27 positive</td>
<td>Lower back pain and stiffness (especially in morning) owing to fusing of vertebrae; uveitis; peripheral arthritis of spine and large joints; increased ESR; bamboo spine on radiograph</td>
</tr>
<tr>
<td>Reactive Arthritis</td>
<td>Autoimmune reaction to prior GI or GU infection; most common in young men who are HLA-B27 positive</td>
<td>Triad of arthritis, nongonococcal urethritis, and conjunctivitis; presents as joint stiffness in large, weight-bearing joints and lower back pain; sausage fingers (synovitis of tendon sheath of fingers)</td>
</tr>
<tr>
<td>Enteropathic Arthritis</td>
<td>Associated with inflammatory bowel disease or GI infections; most common in HLA-B27-positive individuals</td>
<td>Oligoarthritis of the large joints (knees, spine); erythema nodosum; generally resolves after several months</td>
</tr>
<tr>
<td>Psoriatic Arthritis</td>
<td>Associated with more than 10% of patients with psoriasis; manifests between age 30 and 50</td>
<td>Arthritis of the hands, feet, and large joints; sausage fingers; pitting of fingernails; eye inflammation; “pencil-in-cup” deformity of DIP joints on radiograph</td>
</tr>
</tbody>
</table>

Treatment

For all spondyloarthropathies: NSAIDs; physical therapy; intra-articular steroid injections
A 45-year-old obese man presents to the emergency department with a swollen, tender big toe on his right foot. He denies any trauma to the toe. Further questioning reveals that he had consumed a large amount of alcohol the night before. An aspirate of synovial fluid from the metatarsopha-langeal joint of the right big toe demonstrates neutrophils along with needle-shaped, negatively birefringent crystals. You prescribe colchicine to treat his condition.
Gout

| Etiology and Epidemiology | Caused by **joint deposition of urate crystals** owing to hyperuricemia
Primary: Caused by idiopathic hyperuricemia; risk factors include obesity, alcohol use, and genetic susceptibility; most common in middle-aged men
Secondary: Owing to hyperuricemia caused by myeloproliferative disorders, decreased urate excretion (renal disease), drugs (ie, diuretics), or Lesch-Nyhan syndrome (HGPRT deficiency) |
|--------------------------|---|
| **Pathology** | *Joint*: Neutrophils and **urate crystals** (**needle-shaped, negatively birefringent crystals**) in synovial fluid; edematous synovium with inflammatory infiltrate; later, urate deposits can lead to cartilage erosion
Tophi: Cluster of urate crystals surrounded by fibroblasts, lymphocytes, and giant cells located in cartilage or soft tissues |
| **Clinical Manifestations** | **Swollen, tender joint** with sudden onset, often in **MTP joint** of big toe (podagra), ankles, or knees; chronic arthritis may develop; **tophi** on ears, hands, or feet (appear several months after acute arthritis); **urate nephropathy** with interstitial deposit of urate crystals and obstruction by uric acid stones
Lab findings: **Hyperuricemia**, increased ESR, leukocytosis |
| **Treatment** | Colchicine, NSAIDs and/or steroids for acute flare; **allopurinol** or probenecid for chronic treatment |
| **Notes** | **Pseudogout** is caused by joint deposition of calcium pyrophosphate crystals (weakly positive, birefringent, rhomboid crystals). It is more common in elderly and usually affects large joints (eg, knee). |
A 6-year-old boy presents to your office complaining of severe muscle weakness, especially of his thighs. The boy’s parents tell you that his maternal uncle died of a muscle disease during adolescence. Physical examination reveals enlarged calves and decreased strength in the proximal muscles of the lower extremities. When you ask the boy to rise from a crouching position, you notice that he uses his arms to assist himself. Laboratory tests demonstrate increased serum creatine kinase levels. As you send the boy for a muscle biopsy, you begin to suspect that his prognosis is very poor.
Duchenne Muscular Dystrophy

| Etiology and Epidemiology | X-linked recessive disorder resulting in absence of dystrophin synthesis usually caused by gene deletion
| | Affects males with onset by age 5 |

| Pathology and Pathophysiology | *Pathophysiology:* Dystrophin is involved in maintaining myocyte membrane integrity; absence leads to muscle fiber destruction
| | *Muscle:* Variation in muscle fiber size; degeneration and necrosis of muscle fibers; replacement of necrotic fibers with fat and connective tissue |

| Clinical Manifestations | Weakness in proximal muscles of extremities (usually pelvis) that progresses superiorly and eventually leads to immobilization; pseudohypertrophy of calves (owing to replacement of muscle with fibrous and fatty tissue); presence of Gowers maneuver (use of arms to rise from crouching position)
| | Lab findings: Increased serum CK |

| Treatment and Prognosis | No treatment
| | Death via respiratory failure in adolescence caused by involvement of respiratory muscles |

| Notes | Becker muscular dystrophy is characterized by a mutation in the dystrophin gene that leads to reduced synthesis of dystrophin. It presents in a similar fashion to Duchenne muscular dystrophy, but is clinically less severe. |
A 28-year-old man presents to your office complaining of generalized muscle stiffness. He mentions that his mother suffers from a disease causing similar symptoms. Physical examination demonstrates delayed relaxation of the hand muscles following prolonged grip and weakness of the distal muscles in the limb. You also notice the formation of bilateral cataracts, testicular atrophy, and frontal baldness. You prescribe phenytoin to treat his symptoms and you refer this patient to a medical genetics clinic.
Myotonic Dystrophy

| Etiology and Epidemiology | Autosomal dominant disorder resulting in increased CTG repeats in the myotonin protein kinase gene on chr 19
| | Often presents between the ages of 20 and 30, but may manifest in childhood |
| Pathology | *Muscle*: Increased number of internal nuclei in muscle; ring fiber (cytoplasmic band within the center of the fiber); fiber splitting and necrosis of intrafusal fibers of muscle spindles |
| Clinical Manifestations | **Myotonia** (inability to relax contracted muscles), often presenting as muscle stiffness; wasting and weakness of facial muscles and distal limb
	Associated with cataracts, testicular atrophy, baldness, and decreased glucose tolerance
Treatment	Phenytoin to treat myotonia
Notes	Myotonic dystrophy, as well as fragile X syndrome and Huntington disease, demonstrates **anticipation**, which is a phenomenon in which the number of repeats increases with each generation and results in more severe disease manifestations.
A 32-year-old African American woman presents to your clinic complaining of fever and malaise. She has suffered bouts of fever and malaise off and on for the past year. After taking a complete history, you learn that she has gradually lost hair from her scalp over the past year, has lost 20 pounds over the same time period, and is experiencing increasing joint pain. She denies any change in bowel or urinary function. On physical examination, you notice a butterfly rash over her nose and cheeks, tender elbows and knees, and a friction rub. You order serum studies specifically looking for positive readings of ANA and anti-ds DNA antibodies to confirm your suspected diagnosis.
Systemic Lupus Erythematosus (SLE)

Etiology and Epidemiology

Autoimmune disorder; associated with HLA-DR2 and -DR3; certain drugs (hydralazine, INH, phenytoin, procainamide) can produce reversible SLE-like syndrome

Most commonly affects African American women between ages 20 and 40

Pathology and Pathophysiology

Pathophysiology: Disease results from a type III hypersensitivity reaction with the deposition of antigen-antibody complexes in capillaries of visceral structures or results from autoantibody-mediated destruction of host cells

Heart: Mitral valve disease; pericarditis; evidence of coronary artery disease

Kidney: Wire-loop lesions and immune complex deposition (See card on Lupus Nephritis in chapter 6)

Skin: Destruction of epidermal basal layer with dermal edema; necrotizing vasculitis

Joint: Synovitis with neutrophils in synovial fluid and mononuclear infiltrate in subsynovial tissue

Lung: Pleuritis; pleural effusions; interstitial fibrosis

Clinical Manifestations

Fever; fatigue; malar butterfly rash; hair loss; mucosal ulcers; arthritis; photosensitivity; seizures or psychosis; pleuritis; Libman-Sacks endocarditis; Raynaud phenomenon; renal disease with proteinuria

Lab findings: ANA, anti-ds DNA antibodies, anti-Smith antibodies; antihistone antibodies (drug-induced SLE); false positive on syphilis test (RPR/VDRL); hemolytic anemia; pancytopenia

Treatment

NSAIDs; corticosteroids; immunosuppression

Notes

247
A 50-year-old white woman presents to the clinic complaining of a gritty feeling in her eyes and a dry throat for the last 3 weeks. She further describes her ocular discomfort as burning and itching and she reports that she has not been able to produce many tears when crying. She finds that her mouth is excessively dry and that she has problems swallowing and speaking. Her past medical history is significant for rheumatoid arthritis. On physical examination, you also notice bilateral parotid enlargement. You order serum studies looking for the presence of autoantibodies, including anti-SS-A and anti-SS-B antibodies.
Sjögren Syndrome

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Caused by autoimmune destruction of lacrimal and salivary glands; associated with HLA-DR2 and -DR3, RA, SLE and other autoimmune diseases. Predominantly affects women between 40 and 60 years of age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Lacrimal and salivary glands: Perivascular and periductal lymphocytic infiltrate; may see lymphoid follicles; hyperplasia of ductal epithelial cells; eventual fibrosis and atrophy of tissue. May involve other exocrine glands or even extraglandular tissues.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Presents with triad of dry eyes (xerophthalmia), dry mouth (xerostomia), and arthritis (usually RA); conjunctivitis and parotid enlargement may be noticeable; increased risk for B-cell lymphoma. Lab findings: Rheumatoid factor and other autoantibodies common, anti-SS-A (Ro) and anti-SS-B (La) antibodies.</td>
</tr>
<tr>
<td>Treatment</td>
<td>Artificial tears; immunosuppression; steroids.</td>
</tr>
<tr>
<td>Notes</td>
<td>Sicca syndrome is a variant of Sjögren syndrome, consisting only of dry eyes and dry mouth. It may also be associated with nasal dryness, chronic bronchitis, reflux esophagitis, and vaginal dryness. Juvenile rheumatoid arthritis is a variant of rheumatoid arthritis occurring in children. It often has an acute onset with fever, rash, and hepatosplenomegaly. Extra-articular manifestations include pericarditis, pulmonary fibrosis, and glomerulonephritis.</td>
</tr>
</tbody>
</table>
A 55-year-old woman presents to your clinic complaining of muscle weakness and a rash. She states that she has had increased difficulty rising from chairs and climbing stairs over the last 3 months, even though she used to be an avid athlete. On physical examination, you see a malar rash across the patient’s face that is dusky red. There is marked erythema over her neck and shoulders and she has frank periorbital edema as well as a purplish discoloration over her eyelids. Her hands are remarkable for scaly patches over the dorsum of the proximal interphalangeal and metacarpophalangeal joints bilaterally. You order serum studies, measuring levels of muscle enzymes including creatine phosphokinase and aldolase, and you order a muscle biopsy expecting to find lymphoid inflammatory infiltrates, which will confirm your suspected diagnosis.
Myositides (Polymyositis and Dermatomyositis)

| Etiology and Epidemiology | Systemic disorders of unknown cause, although immunologic mechanisms are suspected
Most commonly occur in **women** between ages 40 and 60 |
|--------------------------|--|
| Pathology and Pathophysiology | **Polymyositis (P):** Associated with CD8+ T-cell injury to myofibers; presence of lymphocytic cells in endomysium; no vascular injury; necrotic muscle cells
Dermatomyositis (D): Immune complex deposition in blood vessels with complement activation leading to inflammatory infiltrate in perivascular regions and in perimysial connective tissue of muscle fibers; atrophic and necrotic muscle fibers; vascular endothelial fibrosis |
| Clinical Manifestations | **P:** Gradual, progressive, symmetric **proximal muscle weakness**; late muscle atrophy and contracture; interstitial lung disease; myocarditis
D: Characteristic dusky red **rash in malar distribution** mimicking SLE; **shawl sign** (erythema over face, neck, shoulders, and upper chest and back); periorbital edema; purplish suffusion over eyelids (**heliotrope rash**); scaly patches over interphalangeal and MCP joints (**Gottron papules**); **proximal muscle weakness**; interstitial lung disease; myocarditis; **increased risk of underlying malignancy**
Lab findings for all myositides: Elevated creatine kinase, positive ANA, positive anti-Jo-1 antibodies, positive anti-Mi-2 antibodies |
| Treatment | High-dose corticosteroids; immunosuppression |

Notes
A 35-year-old African American woman presents to the clinic complaining of migrating poly-
arthralgia and skin tightness. She says she feels that her skin has tightened in both her face and hands over the past 6 months. On physical examination, you notice that the skin on her hands and face has become thick and hidebound with a loss of normal folds. She has several telang-
iectasias and areas of hyper- and hypopigmentation in the affected areas. You see ulcerations about the fingertips and subcutaneous calcifications bilaterally. On further questioning, she reports difficulty swallowing, episodes of chest pain, and feels that her hands and feet become painfully pale in cold temperatures. You order serum studies for ANA, anti-Scl antibodies, and anticentromere antibodies to confirm a diagnosis.
Systemic Sclerosis

Etiology and Epidemiology
- Etiology unknown, but abnormality in immune system activation has been suggested.
- Occurs most commonly in **women** between the **ages of 30 and 50**.

Pathology
- **General pathology:** Fibrosis and collagen deposition most commonly affecting the skin, heart, lungs, joints, GI tract (especially the esophagus), and kidneys.
- **Skin:** Perivascular lymphocytic infiltrate with edema; eventual dermal fibrosis; may see subcutaneous calcifications.
- **GI tract:** Fibrosis and atrophy of muscularis; loss of villi and microvilli in small bowel.
- **Joints:** Inflammation of synovium with hypertrophy of synovial tissues.
- **Kidneys:** Intimal thickening with collagenous deposition in vessel walls; vascular fibrinoid necrosis.
- **Lungs:** Interstitial fibrosis; pulmonary HTN owing to vasospasm.
- **Heart:** Pericarditis; myocardial fibrosis.

Clinical Manifestations
- **Dysphagia** and esophagitis; **pulmonary fibrosis**; pulmonary hypertension; **Raynaud phenomenon**; nephritic syndrome; arrhythmias; widespread **skin thickening (scleroderma)** with areas of increased and decreased pigmentation; tendon friction rubs over the wrists, ankles, and knees.
- **Lab findings:** Positive anti-Scl-70 antibody, positive ANA.

Treatment
- Steroids; immunosuppression; NSAIDs.

Notes
- **CREST syndrome** refers to systemic sclerosis with limited cutaneous involvement (usually just face and hands) and classically includes Calcinosis, Raynaud phenomenon, Esophageal dysmotility (dysphagia), Sclerodactyly (claw-like hands), and Telangiectasia. CREST syndrome is commonly associated with a positive anticentromere antibody.
A 25-year-old white man presents to his primary care clinic for follow-up after experiencing a detached retina the week before. His past medical history is significant for multiple shoulder dislocations as a teenager. On physical examination, the patient is very tall, with long arms, legs, and digits. He confesses that he is double jointed and proudly displays his flexibility. He explains that his father also had the same build and flexibility. Although his father was never diagnosed with any condition, he too had suffered from retinal detachments and joint dislocations. The patient informs you that his father passed away because of some type of cardiovascular accident. The rest of his physical examination is normal except for a heart murmur consistent with a mitral valve prolapse. You inform that patient of your suspected diagnosis and tell him that he is at risk for developing aortic dissection in the future.
Marfan Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by mutation in fibrillin gene on chr 15; most mutations are hereditary (autosomal dominant), but 20% of mutations are sporadic</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | *Pathophysiology:* Fibrillin is a glycoprotein constituent of microfibrils and mutation of its gene leads to a defective extracellular matrix
Cardiovascular: **Cystic medial necrosis of aorta** (leads to dilation of aortic valve and weakening of media with increased risk of intimal tear); **mitral valve prolapse** (owing to loss of connective tissue support of valvular leaflet)
Eye: Bilateral subluxation or dislocation of lens
Skeletal: Spinal deformities (kyphosis, scoliosis); pigeon-breast deformity |
| **Clinical Manifestations** | Tall stature with **long extremities; hyperextensible joints; long tapering digits** (arachnodactyly); **ectopia lentis** (dislocation of lenses); aortic valve incompetence; **increased risk for developing dissecting aortic aneurysm** |
| **Treatment and Prognosis** | Spine brace; aortic valve replacement if needed; β-blockers, frequent eye examinations; angiotensin receptor blockers
Death is common between ages 30 and 40 from aortic dissection or CHF secondary to aortic regurgitation |
| **Notes** | **Ehlers-Danlos syndrome** presents with a constellation of hyperextensible skin, hypermobile joints, and the tendency to bleed owing to faulty collagen synthesis. The syndrome comes in 10 varieties with variable inheritance including autosomal dominant (type IV), autosomal recessive (type VI), and X-linked recessive (type IX). |
Disorders of the Skin

Pigmentation Disorders
- Albinism and Vitiligo

Inflammatory Disorders
- Eczematous Dermatitis
- Psoriasis
- Pemphigus Vulgaris and Bullous Pemphigoid

Neoplasms
- Squamous Cell Carcinoma
- Basal Cell Carcinoma
- Malignant Melanoma
Skin

Epidermal Layers from Superficial to Deep

<table>
<thead>
<tr>
<th>Epidermal Layer</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum corneum</td>
<td>Flattened, dying cells containing keratin</td>
</tr>
<tr>
<td>Stratum granulosum</td>
<td>Cells involved in process of keratinization</td>
</tr>
<tr>
<td>Stratum spinosum</td>
<td>Cells involved in keratin synthesis; cells connected by desmosomes</td>
</tr>
<tr>
<td>Stratum basale</td>
<td>Germinal layer of epidermis; often see mitoses; can see melanocytes</td>
</tr>
</tbody>
</table>

Skin Disorder Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macule</td>
<td>Small, flat, discolored lesion</td>
</tr>
<tr>
<td>Plaque</td>
<td>Elevated skin lesion > 1 cm in diameter</td>
</tr>
<tr>
<td>Bullae</td>
<td>Large blister containing fluid</td>
</tr>
<tr>
<td>Acantholysis</td>
<td>Separation of epidermal cells from each other</td>
</tr>
<tr>
<td>Hyperkeratosis</td>
<td>Stratum corneum thickening</td>
</tr>
<tr>
<td>Parakeratosis</td>
<td>Hyperkeratosis associated with nuclei retention in keratinocytes</td>
</tr>
</tbody>
</table>
A 24-year-old African American man presents to your office complaining of irregular depigmented patches on his hands and around his mouth. He has recently been diagnosed with Hashimoto thyroiditis. A skin biopsy reveals no melanin pigment as well as an absence of melanocytes. You recommend that he use copious sunscreen because his condition puts him at a greater risk for skin cancers.
Albinism and Vitiligo

Etiology

Albinism: Inherited inability of melanocytes to synthesize melanin, either owing to tyrosinase deficiency or deficiency in uptake of tyrosine into the melanocyte; may be related to defective migration of neural crest cells (melanocytes are derived from neural crest ectoderm)

Vitiligo: Acquired loss of melanocytes, possibly caused by an **autoimmune** reaction or to melanocyte damage by toxic intermediates of melanin synthesis; associated with autoimmune diseases (Addison disease, Hashimoto thyroiditis, Grave disease, pernicious anemia)

Pathology

Albinism: Can involve the eyes (ocular albinism) or the skin and hair (oculocutaneous albinism); melanocytes present in skin

Vitiligo: Absence of melanocytes in skin

Clinical Manifestations

Albinism: Hypopigmentation involving the eyes, skin, and hair; may lead to loss of vision

Vitiligo: Flat, **irregular lesions of pigment loss**; usually involving **hands**, axillae, or skin around eyes and mouth. *Lab findings:* Variable presence of antimelanocyte antibodies.

Treatment

Albinism: No cure; sun protection is necessary

Vitiligo: Topical corticosteroids; sun protection

Notes

Patients with albinism or vitiligo are at a **greater risk for actinic keratoses and skin cancers.**
A 10-year-old boy presents to your office with a pruritic, vesicular rash. His mother tells you that he spent the previous day playing in the woods during a supervised summer camp outing. After ruling out any sort of infectious process, you prescribe topical corticosteroid creams and suggest that the boy avoid contact with certain plants to avoid recurrence.
Eczematous Dermatitis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Chemicals (contact dermatitis); drugs or UV light; repeated trauma (irritant dermatitis); type IV hypersensitivity reaction (atopic dermatitis)</th>
</tr>
</thead>
</table>
| **Pathology** | May demonstrate **several histopathologic appearances of skin** depending on phase of disorder
Acute stage: Edema fluid within epidermis *(spongiosis)*; **vesicles**; perivascular lymphocytic infiltrate in epidermis; eosinophils when caused by drug reaction
Subacute stage: Combination of acute and chronic features
Chronic stage: **Acanthosis**; **hyperkeratosis**; lymphocytic infiltrate in dermis |
| **Clinical Manifestations** | Acutely, may present with red, oozing, pruritic, and crusted lesions
Chronically, may develop into raised, poorly defined, scaling plaques |
| **Treatment** | Corticosteroids; removal of aggravating agent; antihistamines |
| **Notes** | **Erythema multiforme** is a skin disorder that results from hypersensitivity to microbes *(herpes, mycoplasma)* or drugs *(penicillin, NSAIDs, sulfonamides)*. It presents with macules, papules, vesicles, and the characteristic **target lesion**. As a clinical syndrome, it can vary in severity, with the most severe form marked by systemic toxicity and mucosal involvement *(Stevens-Johnson syndrome)*. |
A 34-year-old woman presents to your office complaining of a chronic skin rash. The rash appears to consist of well-demarcated coral-colored plaques with silvery scales over the scalp, elbows, and knees. You discover that removing the scales results in pinpoint areas of bleeding. The patient also tells you that she suffers from some arthritic symptoms. You suspect that a skin biopsy would demonstrate acanthosis with Munro microabscesses, parakeratosis, and elongation of the rete ridges.
<table>
<thead>
<tr>
<th>Psoriasis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Etiology unknown; autoimmunity and genetic predisposition postulated</td>
</tr>
</tbody>
</table>
| **Pathology** | *Skin:* Thin *stratum granulosum* with **parakeratosis**; epidermal thickening (**acanthosis**) leads to **lengthening of rete ridges**; thinning of surface epidermis over dermal papillae, leading to proximity of dermal blood vessels to surface; neutrophil clusters in epidermis (spongiform pustules) or in stratum corneum (**Munro microabscesses**)
| **Clinical Manifestations** | Defined coral-colored plaque covered with **silver scales**, usually located on scalp, elbows, and knees; **positive Auspitz sign** (removal of scale results in tiny areas of bleeding); nail discoloration with separation of nail plate from nail bed
Associated with **psoriatic arthritis**, enteropathy, or myopathy |
| **Treatment** | Topical corticosteroids; UVB light exposure; methotrexate |

Notes

255
A 51-year-old man presents to your clinic complaining of painful blisters over his entire body. He notes that he currently has several ulcers in his mouth as well. Physical examination reveals severe bullae. You note that a blister appears when you rub his skin with your finger. When a skin biopsy demonstrates acantholysis, you tell the patient that his symptoms are due to an autoimmune disorder and you prescribe steroids to treat his condition.
Bullous Pemphigoid and Pemphigus Vulgaris

Etiology and Epidemiology
Bullous pemphigoid (BP): Autoimmune disease characterized by IgG antibodies against hemidesmosomes of the epidermal basement membrane; most commonly affects men > 60 years old
Pemphigus vulgaris (PV): Autoimmune disease characterized by IgG antibodies against intercellular junctions between epidermal keratinocytes; most commonly seen in patients, ages 30–60

Pathology
BP: Subepidermal bullae in skin; perivascular infiltrate of eosinophils and lymphocytes; immunofluorescence demonstrates linear band of complement and IgG deposition along basement membrane
PV: Acantholysis of cells directly above basal cell layer of skin, resulting in suprabasal acantholytic blister; immunofluorescence demonstrates IgG and complement encircling epidermal cells

Clinical Manifestations
BP: Chronic relapsing and remitting course, characterized by pruritic, fluid-filled blisters; clinically less severe than pemphigus vulgaris. *Lab findings:* antibasement membrane antibodies.
PV: Severe, intraepidermal bullae initially occurring in the mouth, but eventually involving whole body; ruptured bullae may lead to secondary infection; positive Nikolsky sign (development of blister after rubbing skin with finger). *Lab findings:* presence of antiadhesion molecule immunoglobulins.

Treatment
BP: Corticosteroids
PV: Systemic corticosteroids and immunosuppressive drugs

Notes
Paraneoplastic pemphigus is distinct from PV and is associated with mucosal lesions, similar to erythema multiforme. Survival rates are low owing to the underlying malignancy.
A 67-year-old man presents to your office after noticing a hard, red, ulcerated nodule on the back of his left hand. A skin biopsy of the nodule reveals cellular atypia and anaplasia throughout the epidermis and extending into the dermis, as well as hyperkeratosis with keratin pearls. You tell him that he has cancer, but reassure him that a simple excision surgery will likely cure his condition.
Squamous Cell Carcinoma of the Skin

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Risk factors include excessive exposure to sunlight (UV light), tobacco, arsenic, immunosuppression, defective DNA repair mechanisms (eg, xeroderma pigmentosum), and exposure to tars and ionizing radiation</th>
</tr>
</thead>
</table>
| Pathology | *Actinic keratosis*: **Precursor lesion**; poorly defined, red, scaling lesion sometimes forming a cutaneous horn; **cellular atypia and hyperplasia of basal cells**; parakeratosis; intercellular bridges are present
In situ carcinoma: Well-defined, red, scaling plaque or ulcerated nodule; *not invaded through basement membrane*; **cellular atypia** at all levels of epidermis; **hyperkeratosis** with keratin pearls
Invasive carcinoma: Invaded through basement membrane; marked **anaplasia** of sheets of neoplastic epidermal cells; **keratinization** with keratin pearls |
| Clinical Manifestations | **Small, red, ulcerating nodule** occurring on sun-exposed areas (hands and face) |
| Treatment and Prognosis | Surgical excision
Less than 5% of cases metastasize; surgery is usually curative |
| Notes | |

257
A 62-year-old woman presents to your clinic complaining of a raised, ulcerated lesion on her right cheek. She tells you that she used to work as a gardener and enjoys working in her own garden several hours a day now that she is retired. Examination of the lesion reveals a pearly, ulcerated papule with overlying telangiectasias. When a skin biopsy demonstrates clusters of cells with dark blue nuclei surrounded by palisading basal cells, you reassure this patient that her condition, although serious, will likely be cured by surgery.
Basal Cell Carcinoma

Etiology and Epidemiology
Most common of all skin neoplasms
Risk factors include **chronic exposure to sunlight** (UV light), fair skin, immunosuppression, and defective DNA repair mechanisms (eg, xeroderma pigmentosum)

Pathology
Skin: Clusters of **atypical tumor cells with dark blue nuclei** arising from basal cells of epidermis; tumor clumps surrounded by cells at periphery with palisading arrangement of nuclei; multiple growth patterns including nodular, cystic, and trabecular; **invades dermis**

Clinical Manifestations
Pearly, telangiectatic papule, which may ulcerate or bleed, usually occurring on sun-exposed areas (especially face)

Treatment and Prognosis
Surgical excision
Rarely metastasizes, so surgery is usually curative

Notes
Xeroderma pigmentosum is an autosomal recessive disorder. It is characterized by defects in genes involved in nucleotide excision repair, which are necessary for the repair of pyrimidine dimers formed by UV light exposure. Clinical manifestations include increased incidence of all skin cancers.
A 48-year-old man presents to your office after noticing an irregularly shaped lesion on the extensor surface of his left forearm. He mentions that he had noticed the spot before, but it has recently changed color from a light brown to a dark reddish purple and it now seems to be more raised than it used to be. Examination of the lesion reveals a poorly defined, hyperpigmented, and multicolored nodule. You also note left axillary lymphadenopathy. When a biopsy of the lesion demonstrates nests of atypical pigmented cells invading the dermis, you suspect that there is a high probability that this lesion has metastasized and you refer the patient to an oncologist.
Malignant Melanoma

Etiology
Associated with **excessive exposure to sunlight**, genetic predisposition (10% of cases are familial), immunosuppression, and fair skin.

Pathology
Dysplastic nevus: Precursor lesion; nests of nevus cells within epidermis demonstrating cellular atypia and anaplasia; mild lymphocytic infiltrate and linear fibrosis in dermis.

Melanoma: Arises from melanocytes or nevus cells; exhibits **two growth phases** in skin: (1) **Radial growth**: discolored *macule*, **horizontal growth** of nests of atypical cells within epidermis, **lymphocytic infiltrate** and melanin-containing macrophages in dermis, **does not metastasize**; (2) **Vertical growth**: nodular appearance, **growth into underlying dermis**, **does metastasize** and metastatic probability is directly proportional to depth of invasion.

Clinical Manifestations
Variation in pigmentation, size, and border in pigmented lesion; may be pruritic.

Clinical variants: (1) **Superficial spreading**: most common form, irregularly bordered lesion, radial phase predominates with no invasion of dermis; (2) **Nodular**: vertical growth phase predominates; (3) **Lentigo maligna**: arises from precursor lesion (Hutchinson freckle); can give rise to spindle-cell melanoma or desmoplastic melanoma.

Lab finding: Presence of S-100 tumor marker.

Treatment and Prognosis
Surgical excision along with regional lymph node dissection; chemotherapy; consider IL-2 treatment for metastatic disease.

Metastasis occurs frequently, especially to intestinal serosa, esophagus, eye, and meninges.

Metastatic disease and nodular variant have a particularly poor prognosis.

Notes
259
Disorders of the Immune System

Immune Reactions
- Hypersensitivity Reactions
- Organ Rejection

Immunodeficiency Disorders
- Bruton Agammaglobulinemia
- Common Variable Immunodeficiency
- DiGeorge Syndrome
- Severe Combined Immunodeficiency Disease
- Chronic Granulomatous Disease of Childhood
- Job Syndrome

Other Disorders
- Histiocytosis X
- Amyloidosis
Immunoglobulin Types and Function

<table>
<thead>
<tr>
<th>Isotype</th>
<th>Structure</th>
<th>Location</th>
<th>Function(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td>Monomer or pentamer</td>
<td>Antigen receptor on B-cell surface</td>
<td>1° response to antigen; fixes complement</td>
</tr>
<tr>
<td>IgG</td>
<td>Monomer</td>
<td>Most abundant immunoglobulin</td>
<td>2° response to antigen; fixes complement; crosses placenta; opsonizes and neutralizes bacteria, viruses</td>
</tr>
<tr>
<td>IgA</td>
<td>Monomer or dimer</td>
<td>Secretions</td>
<td>Neutralizes bacteria & viruses by preventing adherence to mucous membranes</td>
</tr>
<tr>
<td>IgD</td>
<td>Monomer</td>
<td>B-cell surface, serum</td>
<td>Unknown function</td>
</tr>
<tr>
<td>IgE</td>
<td>Monomer</td>
<td>Low concentration in serum</td>
<td>Mediates type I hypersensitivity</td>
</tr>
</tbody>
</table>
A fellow medical student suddenly complains that he cannot breathe and within seconds is frantically gasping for air. You were about to help him examine a patient and both of you had just put on some latex gloves. You immediately take your and his gloves off and ask the nurse to draw up 1 mg of epinephrine and to bring an intubation box. You do a quick survey of your colleague and find, along with his acute dyspnea, he has marked edema of his upper extremities and face. You inject the epinephrine SQ and start an IV so that you can begin to administer a rapid IV infusion of large volumes of saline solution to combat any hypotension and shock. Your fellow medical student has markedly improved within minutes, however he is admitted to the hospital for further observation.
Hypersensitivity Reactions

| **Etiology** | Type I: IgE-mediated immediate hypersensitivity
Type II: Antibody-mediated cytotoxic hypersensitivity
Type III: Immune complex–mediated hypersensitivity
Type IV: T-cell-mediated delayed hypersensitivity |
|-------------------------------|--|
| **Pathophysiology** | Type I: Antigen cross-links **cell-bound IgE** on presensitized mast cells and basophils, causing release of vasoactive amines that cause vasodilation, visceral smooth muscle contraction, vascular permeability, and tissue inflammation
Type II: IgG or IgM antibody reacts to **cell-bound antigens** resulting in activation of the complement cascade and destruction of antigen-bound cell
Type III: IgG or IgM antibody **complexes** with allergen and **deposits in tissue**, thereby activating complement cascade
Type IV: Allergen binds endogenous protein, and is presented to T cells. If reexposed to allergen, **memory T cells** stimulate inflammatory reaction. |
| **Clinical Manifestations** | Type I: **Atopy; anaphylaxis; asthma; allergic rhinitis; local wheal and flare**
Type II: Immune hemolytic anemia; **erythroblastosis fetalis; ARF; Goodpasture syndrome**
Type III: **Arthus reaction** (localized cutaneous and subcutaneous inflammatory response to injected allergen); **serum sickness** (systemic disease fever, arthralgias, proteinuria, lymphadenopathy, and dermatitis); polyarteritis nodosa; SLE; RA
Type IV: Allergic dermatitis; hypersensitivity pneumonitis |
| **Treatment** | Antihistamines; corticosteroids; treatment of specific disease |
| **Notes** | 261 |
Within 10 minutes of anastomosing a kidney from a living donor into your patient, you see that the kidney graft is rapidly becoming cyanotic, mottled, and flaccid in appearance. After several more minutes, a mere few drops of bloody urine are produced. You fear that the kidney will not be functional, likely because the recipient may have had preformed antidonor antibodies, and you decide to remove the nonfunctioning allograft. Subsequent histologic study of the rejected tissue demonstrates a neutrophilic infiltrate within the arterioles, glomeruli, and peritubular capillaries.
Organ Rejection

| **Etiology** | **Hyperacute rejection**: Caused by **preformed antidonor antibodies** (eg, antiblood-type antibodies) present in recipient’s circulation
Acute rejection: Caused by **cytotoxic T-cell reaction** with class I MHC
Chronic rejection: Decreased effectiveness of long-term immunosuppressive therapies allows for vascular changes within graft
Graft-versus-host disease (GVHD): Grafted T cells proliferate in immunocompromised recipient and attack recipient host cells |
|---|---|
| **Pathology** | **Hyperacute**: Cyanosis of graft with necrosis; neutrophilic infiltration; fibrin-platelet thrombi
Acute: Interstitial **mononuclear infiltrate** with edema and hemorrhage; necrotizing vasculitis with swollen endothelial cells and thrombosis
Chronic: **Intimal fibrosis** of arteries leading to ischemic damage and atrophy to graft
GVHD: Inflammatory damage to immune system, skin, liver, and GI tract |
| **Clinical Manifestations** | **Hyperacute**: Occurs within **minutes** after transplant
Acute: Occurs **weeks** after transplant
Chronic: Occurs **months to years** after transplant
GVHD: Symptoms include maculopapular rash, jaundice, diarrhea, and hepatosplenomegaly |
| **Treatment** | **Hyperacute and chronic**: Irreversible
Acute: Reversible with immunosuppression (eg, cyclosporine)
GVHD: Treat donor tissue with antithymocyte globulin or monoclonal antibodies before graft; immunosuppression (eg, cyclosporine) |
| **Notes** | |
A 9-month-old male infant is brought to the pediatric clinic for the fourth time in 8 weeks. The infant had been previously seen for pneumonia, sinusitis, and otitis media infections. He presents with what appears to be another otitis media infection. Suspicious of an immunologic disorder, you order serum studies to look at B-cell, T-cell, and immunoglobulin levels. The studies show an absence of B cells in the blood, normal T-cell levels, and low levels of all classes of immunoglobulins. You suspect that a lymph node biopsy would reveal poorly defined germinal centers and you refer this patient to an immunology clinic.
Bruton Agammaglobulinemia

| **Etiology and Epidemiology** | X-linked recessive defect in tyrosine kinase gene, resulting in **failure of B-cell precursors to mature into B cells**
Most commonly seen in **male** infants |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>Lymphoid tissue: Absent or poorly defined germinal centers</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Presents as **recurrent pyogenic bacterial infections** (otitis media, sinusitis, pneumonia) in boys **after 6 months of age** (when levels of maternal IgG begin to decline); cell-mediated immunity function is normal
Lab findings: **Low levels of all classes of immunoglobulins, absence of serum B cells** |
| **Treatment** | Pooled gamma globulin |
| **Notes** | **Wiskott-Aldrich syndrome** is an X-linked recessive defect in the ability to mount an IgM response to encapsulated bacteria (eg, *Pneumococcus*). It is characterized by elevated IgA levels, low IgM levels, and normal IgE and total immunoglobulin levels. Patients present with the triad of recurrent pyogenic **infections, eczema,** and petechiae and bleeding owing to **thrombocytopenia.** Treatment is supportive with bone marrow transplant and splenectomy as alternative options. |
An 18-year-old woman presents to the clinic with a recurrent sinus infection. She has also suffered from bronchitis, otitis media complicated by meningitis, steatorrhea, and pneumonia over the last year. Physical examination reveals hepatosplenomegaly. You order serum studies, which demonstrate a markedly depressed IgG level and subnormal serum IgA and IgM levels. Further testing reveals that the patient has absent functional antibody responses to protein antigen immunizations. You treat the sinusitis with antibiotics and you suggest IV gamma globulin therapy for treatment of her underlying condition.
<table>
<thead>
<tr>
<th>Common Variable Immunodeficiency</th>
</tr>
</thead>
</table>
| **Etiology and Epidemiology** | Caused by an intrinsic **B-cell defect** preventing terminal maturation into antibody-secreting plasma cells with deficient synthesis of secreted antibody
Onset is usually during adolescence or early adulthood |
| **Pathology** | *Spleen, liver, lungs, and skin: Noncaseating granulomas* |
| **Clinical Manifestations** | Increased incidence of **recurrent pyogenic infections**, sprue-like GI syndrome, and autoimmune phenomena
Complications include an increased propensity for development of **B-cell neoplasms**, gastric carcinomas, and skin cancers
Lab findings: Depressed IgG levels with all antibody classes eventually affected; decreased or absent functional antibody responses to protein antigen immunizations; absolute B-cell count in peripheral blood is normal |
| **Treatment** | Antibiotics; IV gamma globulin therapy |
| **Notes** | **Selective IgA deficiency** is the most common primary immunodeficiency disorder and is characterized by absence of serum IgA, possibly owing to an isotype switching defect. It presents with sinus and lung infections, milk allergies, and anaphylaxis to blood transfusions. |
You are emergently called to see a newborn infant boy, who appears cyanotic in the nursery. Indeed, on physical examination, the infant appears agitated, cyanotic, and signs of tetany are apparent. The appearance of the mouth, ears, and facies is abnormal. You order serum studies that show normal immunoglobulin levels, but an absence of T cells in the peripheral blood. You believe that the cyanosis is caused by a congenital defect of the heart and great vessels and you order imaging studies to confirm your suspected diagnosis. When the infant’s parents ask for a possible cause for their son’s condition, you inform them that you believe that there was a developmental failure of the thymus and parathyroids owing to a chromosomal microdeletion.
DiGeorge Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by microdeletion on chr 22q11, which results in the failure of development of third and fourth pharyngeal pouches</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Thyroid and parathyroid:** Hypoplasia of tissue
Pathophysiology: Thymic hypoplasia results in **T-cell deficiency**; parathyroid hypoplasia results in hypocalcemia |
| **Clinical Manifestations** | **Recurrent** viral, fungal, and protozoal **infections**; tetany (owing to hypocalcemia); congenital **cardiovascular defects**; facial abnormalities including cleft palate |
| **Treatment** | Fetal thymus transplanted to restore T-cell immunity |
| **Notes** | **Chronic mucocutaneous candidiasis** is a T-cell dysfunction specifically against *Candida albicans* that presents with *Candida* skin and mucous membrane infections. |
A male neonate presents to the hospital with prominent thrush consistent with oral candidiasis, extensive diaper rash, and failure to thrive. The infant has also developed a morbilliform rash. You begin to treat the infant empirically with antibiotics to combat his possible infections. When serum studies demonstrate markedly low levels of both B and T cells in the peripheral blood, you suspect that the patient may have a serious inherited immune disorder and you request an immunology consultation.
Severe Combined Immunodeficiency Disease (SCID)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Fifty-five percent of cases caused by X-linked recessive disorder resulting in defective IL-2 receptors on T cells; remaining cases caused by autosomal recessive disorders, which result in other mutations including adenosine deaminase deficiency, tyrosine kinase deficiency, failure to synthesize class II MHC antigens, or a defective recombinase-activating gene mutation</th>
</tr>
</thead>
</table>
| **Pathology and Pathophysiology** | **Lymphoid tissues**: Small, undifferentiated thymus with reduced numbers of lymphocytes; other lymphoid tissues are hypoplastic with depletion of T-cell areas
Pathophysiology: Mutations cause faulty stem cell differentiation, resulting in a defect in both humoral and cell-mediated immune responses |
| **Clinical Manifestations** | Severe, recurrent viral, bacterial, fungal, and protozoal infections (especially prone to infections by *C albicans, Pneumocystis carinii, Pseudomonas, CMV*, and *VZV*); may present with prominent thrush, extensive diaper rash, and failure to thrive
Lab findings: Profound lymphopenia |
| **Treatment** | Adenosine deaminase gene transplantation; bone marrow transplantation; stem cell transplantation |
| **Notes** | |
An 8-month-old male infant is brought to the clinic with a fever and noticeable difficulty breathing. The child had previously been hospitalized with newborn meningitis caused by *Escherichia coli* and a urinary tract infection caused by *Serratia*. A chest x-ray is suspicious for infiltrates consistent with pneumonia. You start the child on ventilatory support and broad spectrum antibiotics to treat his pneumonia. As his treatment is being initiated, you begin to suspect that this patient may have an immunodeficiency syndrome and you order a nitroblue tetrazolium dye reduction test to confirm your diagnosis.
Chronic Granulomatous Disease of Childhood

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by inherited X-linked or autosomal recessive defects in genes encoding components of NADPH oxidase, an enzyme that generates superoxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Neutrophils use the myeloperoxidase-halide system to combat bacteria. The myeloperoxidase-halide system requires H₂O₂ to function. H₂O₂ is produced by bacterial metabolism and by NADPH oxidase. Catalase-positive organisms (like Staphylococcus) can destroy the H₂O₂ produced by bacterial metabolism. Without NADPH oxidase activity, there is no source of H₂O₂ and the myeloperoxidase-halide system is unable to kill catalase-positive bacteria.</td>
</tr>
</tbody>
</table>
| **Clinical Manifestations** | Presents with marked susceptibility to opportunistic catalase-positive bacterial infections, including *E coli, Staphylococcus aureus, Serratia, and Aspergillus*
Lab findings: Negative nitroblue tetrazolium dye reduction test because of absence of reactive O₂ intermediates |
| **Treatment** | Gamma interferon; prophylactic antibiotics; gene therapy |
| **Notes** | **Chediak-Higashi syndrome** is an autosomal recessive defect of leukocyte function affecting microtubules and lysosomal emptying of phagocytes. It presents with recurrent *Staphylococcus* and *Streptococcus* infections, neutropenia, albinism, bleeding, and neuropathy.
Leukocyte adhesion deficiency syndrome is caused by a defect in LFA-1 adhesion proteins on the surface of phagocytes that presents early in life with severe pyogenic infections and impaired wound healing. |
A 1-year-old boy presents to the pediatric clinic with what appears to be an abscess on his left forearm. This is the second time the child has presented with such an abscess. On physical examination, you see a focal skin infection on the left forearm with no real sign of inflammation. You also note that the child has coarse facies and extensive eczema on his back and legs. You decide to order serum studies examining immunoglobulin levels, expecting to see an elevated IgE level, which would confirm your preliminary diagnosis.
Job Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Failure of γ-interferon production by helper T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Lack of γ-interferon leads to an increase in helper T-cell type 2 production and subsequent increase in IgE levels. The increase in IgE levels leads to increased histamine release and lack of inflammation.</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>Presents with noninflamed, cold recurrent Staphylococcal abscesses, eczema, and elevated IgE levels; patients may also have coarse facies and retained primary teeth</td>
</tr>
<tr>
<td>Treatment</td>
<td>Antibiotics to treat infections</td>
</tr>
<tr>
<td>Notes</td>
<td>Hyper-IgM syndrome results from a defect in CD40 ligand on CD4 T helper cells leading to an inability to class switch from IgM to other classes. It presents with severe pyogenic infections early in life.</td>
</tr>
</tbody>
</table>
An 18-month-old girl presents to the pediatric clinic with a recurring otitis media and a widespread skin rash. On physical examination, you find cutaneous lesions resembling a seborrheic eruption over her trunk and the scalp. In addition to otitis media of her left ear, hepatosplenomegaly and cervical lymphadenopathy are present. Serum studies show marked anemia and thrombocytopenia. A series of radiographs demonstrates multiple bone lesions consistent with destructive osteolysis. You suspect that electron microscopy of a skin lesion would reveal the presence of tennis-racket shaped structures in the cytoplasm.
Histiocytosis X Syndromes

Etiology
Caused by a proliferation of dendritic tumor cells, which express HLA-DR and CD1a. Three subtypes include **Letterer-Siwe (L-S)** disease, **Hand-Schüller-Christian (H-S-C)** disease, and **eosinophilic granuloma (EG)**.

Pathology
Gross: Lesions involve multiple organ systems, including skin, bone, lung, and stomach.

Microscopic: Proliferation of **neoplastic histiocytic cells resembling epidermal Langerhans cells; Birbeck granules** (tennis-racket shaped cytoplasmic structures) within neoplastic cells; presence of eosinophils in lesions seen in eosinophilic granuloma.

Clinical Manifestations

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-S:</td>
<td>Presents < 3 years of age; fever followed by diffuse maculopapular eczematous purpuric skin rash over trunk and scalp; concurrent hepatosplenomegaly; lymphadenopathy; pulmonary involvement; bone involvement; recurrent otitis media. Lab finding: pancytopenia.</td>
</tr>
<tr>
<td>H-S-C:</td>
<td>Presents < 5 years of age; classic triad of cystic bony skull lesions, diabetes insipidus (hypothalamic involvement), and exophthalmos (orbit involvement)</td>
</tr>
<tr>
<td>EG:</td>
<td>Solitary bone lesion (skull, mandible, spine); possible lung involvement</td>
</tr>
</tbody>
</table>

Treatment and Prognosis

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-S:</td>
<td>Corticosteroids; chemotherapy; very aggressive and often fatal disease</td>
</tr>
<tr>
<td>H-S-C:</td>
<td>Combination chemotherapy; curettage of bone lesions</td>
</tr>
<tr>
<td>EG:</td>
<td>Lesions resolve spontaneously; good prognosis</td>
</tr>
</tbody>
</table>

Notes

269
A 56-year-old man with a past medical history significant for multiple myeloma develops flank pain and oliguria. Upon further history, you learn that he has also developed progressive shortness of breath on exertion over the past month. He is admitted to the hospital and serum and urine studies are ordered upon admission, showing the presence of monoclonal immunoglobulins and free light chains. When a fat pad biopsy, in which the Congo red dye is employed, shows apple-green birefringence under polarized light, you begin to suspect that this patient’s current condition is related to his multiple myeloma.
Amyloidosis

| **Etiology** | **Primary:** Associated with plasma cell dyscrasias
Secondary: Occurs as a complication to underlying chronic infections (i.e., TB, osteomyelitis) or chronic inflammatory diseases (i.e., RA, IBD) |
|---|---|
| **Pathology and Pathophysiology** | **Primary:** Deposition of monoclonal immunoglobulin light chains (AL protein), usually in heart, GI tract, muscle, nervous system, and kidneys
Secondary: Deposition of AA protein, which is derived from apolipoprotein precursors; usually involves kidneys, GI tract, and skin
Histopathology: Apple-green birefringence of amyloid protein on Congo red stain
Pathophysiology: Impaired organ function caused by infiltration of tissues with insoluble protein fibrils |
| **Clinical Manifestations** | Symptoms are related to malfunction of organ involved (e.g., nephrotic syndrome, renal failure, restrictive cardiomyopathy, arthritis, neuropathy, intestinal malabsorption, respiratory failure) |
| **Treatment** | **Primary:** Melphalan and prednisone
Secondary: Aggressive treatment of predisposing disease |
| **Notes** | Other diseases with amyloid deposition include Alzheimer disease (amyloid β-protein), Portuguese type of polyneuropathy (transthyretin), nephropathic hereditary amyloidosis (AA protein), diabetes (islet amyloid polypeptide), senile amyloidosis (transthyretin), medullary carcinoma of the thyroid (amyloid formed from calcitonin precursors), and dialysis amyloidosis (β-microglobulin). |
Chromosomal Disorders

Autosomal Disorders
- Down Syndrome
- Edwards and Patau Syndromes
- Prader-Willi and Angelman Syndrome

Sex Chromosome Disorders
- Turner Syndrome
- Klinefelter Syndrome
- Fragile X Syndrome
Chromosomes

DISRUPTIONS IN CHROMOSOMAL STRUCTURE OR NUMBER

- **Aneuploidy**: Chromosome number that is not a multiple of 23
 → Caused by addition/loss of chromosomes during meiosis through **nondisjunction** (failure of chromosomes to separate during cell division) or **anaphase lag** (loss of chromosome during cell division)
- **Polyploidy**: Chromosome number that is 3 or 4 times the haploid number of 23
- **Deletion**: Loss of part of chromosome
- **Translocation**: Exchange of chromosome parts between nonhomologous chromosomes
 → **Balanced translocation**: No genetic material lost; clinically asymptomatic
 → **Robertsonian translocation**: Joining of long arms of two acrocentric chromosomes with loss of short arms
- **Inversion**: Reunion of separated portion of chromosome back into an inverted position
A newborn boy born to a 48-year-old woman is referred to your medical genetics clinic. He has a flat face, wide-set eyes, epicanthal folds, white spots on the periphery of his irises, and a single palmar crease across both of his hands. Upon reading his medical chart, you discover that he also suffers from an ostium primum ASD, a VSD, and duodenal atresia. You suspect that this patient’s karyotype will be markedly abnormal.
Down Syndrome

Etiology

Trisomy 21 accounts for 95% of cases (usually because of meiotic nondisjunction). The incidence of trisomy 21 increases with maternal age so that Down syndrome occurs in 1 in 25 births to mothers over the age of 45.

Robertsonian translocation accounts for 4% of cases. The long arm of chr 21 is translocated to another chromosome (usually chr 14 or 22).

Mosaicism accounts for 1% of cases, resulting from mitotic nondisjunction of chr 21 during embryogenesis.

Characteristics

Severe mental retardation; duodenal and esophageal atresia; short hands with simian crease (single palmar crease); specific facial features—flat face, epicanthal folds, wide-set eyes, and Brushfield spots (white spots on periphery of iris).

Congenital heart defects: Endocardial cushion defects leading to ostium primum ASD, VSDs, and AV valve malformations.

Complications

Patients with Down syndrome have an increased chance of developing acute leukemias, increased susceptibility to infections, and degenerative changes in the brain, similar to Alzheimer disease, which occur in middle age.

Treatment and Prognosis

Surgical treatment for duodenal atresia and congenital heart defects

More than 80% of patients survive past age 30, but life expectancy is shortened.

Notes

272
A baby girl is born to a 46-year-old woman. The baby has multiple abnormalities, including polydactyly, a cleft lip and palate, and microcephaly, causing you to suspect that the baby most probably also has congenital heart and renal defects. You decide to send a sample of the baby’s blood for chromosomal analysis, but you inform the mother that you suspect that her baby’s prognosis is not good.
Edwards Syndrome and Patau Syndrome

| **Etiology** | Edwards syndrome: Most cases are caused by trisomy 18 (usually owing to meiotic nondisjunction). Incidence increases with maternal age. A few cases are caused by mosaicism, resulting from mitotic nondisjunction of chr 18 during embryogenesis.
| | Patau syndrome: Most cases are caused by trisomy 13 (usually owing to meiotic nondisjunction). Incidence increases with maternal age. A few cases are caused by mosaicism, resulting from mitotic nondisjunction of chr 13 during embryogenesis or translocation between chr 13 and 14. |
| **Characteristics**| Edwards syndrome: Severe mental retardation; rocker-bottom feet; specific facial features—prominent occiput, micrognathia (small jaw), low-set ears; congenital heart and renal defects; overlapping third and fourth fingers
| | Patau syndrome: Severe mental retardation; microcephaly and holoprosencephaly; cleft lip and palate; microphthalmia (small eyes); polydactyly; congenital heart and renal defects; umbilical hernia; rocker-bottom feet |
| **Prognosis** | Edwards and Patau syndromes: Fatal within 1 year of birth |
| **Notes** |
A 5-year-old girl presents to the emergency department with seizures. The girl’s parents tell you that the child is mentally retarded. They also mention that the child has an off-balance gait and laughs at inappropriate times. You treat the seizures and refer the patient and her family to a medical genetics clinic, while suspecting that the same mutation on the paternally derived chromosome would have resulted in a completely different phenotype.
Prader-Willi and Angelman Syndromes

Etiology	Both diseases are caused by an identical deletion on chr 15q. Demonstrates imprinting, which is the phenomenon in which the same mutation results in different phenotypes depending on whether the mutated chromosome was of maternal or paternal origin.
Characteristics	**Prader-Willi syndrome:** Deletion is on paternally derived chromosome; mental retardation; hypogonadism; hypotonia; obesity often leading to diabetes. **Angelman syndrome:** Deletion is on maternally derived chromosome; “happy puppet” with ataxic gait and inappropriate laughter; mental retardation; seizures.
Treatment	Treatment of symptoms with lifelong supervision.
Notes	Cri-du-chat syndrome is a genetic disorder that results from a deletion of the short arm of chr 5 (5p-). It is characterized by mental retardation, wide-set eyes (hypertelorism), cardiac defects, microcephaly, and a cat-like high-pitched cry.
A 28-year-old man presents to an infertility clinic with his wife. They have been trying to conceive unsuccessfully for the last 3 years. Upon physical examination, you find that he has small atrophic testes and gynecomastia. Laboratory results reveal decreased testosterone levels and increased pituitary gonadotropins. You begin to suspect that this couple may be unable to have children naturally and you refer the patient to a medical genetics clinic.
Klinefelter Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by two or more X chromosomes with one or more Y chromosome (most commonly 47, XXY karyotype with a single Barr body). This genetic disorder is most commonly caused by maternal meiotic nondisjunction and incidence rises with maternal age, but can also be caused by mosaicism or paternal meiotic nondisjunction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Small, atrophic testes; tall stature; lack of secondary male characteristics and gynecomastia; male infertility, often caused by reduced spermatogenesis; occasionally associated with mild mental retardation</td>
</tr>
</tbody>
</table>

Lab findings: Decreased testosterone levels; increased FSH and LH levels

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Testosterone replacement after puberty (does not treat infertility)</th>
</tr>
</thead>
</table>

| Notes | XYY syndrome results in tall men with severe acne. There is an increased frequency of XYY syndrome among criminals. |
A 15-year-old girl presents to your office complaining of amenorrhea. Physical examination reveals a short girl with hypertension in the upper extremities, decreased femoral pulses, a webbed neck, and poor breast development. Laboratory tests reveal decreased estrogen levels and increased FSH and LH levels. You begin to suspect that the patient may be at increased risk for developing diabetes mellitus, osteoporosis, and Hashimoto thyroiditis later in life because of an underlying chromosomal disorder.
Turner Syndrome

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Caused by partial or complete monosomy of the X chromosome (XO karyotype with no Barr body)</th>
</tr>
</thead>
</table>

Characteristics

- **Short stature** with a **broad chest** and widely spread nipples; cystic hygroma of neck leading to **webbed neck** appearance; lymphedema of extremities; **primary amenorrhea** with replacement of ovaries with fibrous strands (no ova or follicles); infantile genitalia and breasts; **coarctation of the aorta** and other congenital heart defects

Patients are at an increased risk for developing DM, hypertension, Hashimoto thyroiditis, and osteoporosis

Lab findings: **Decreased estrogen** production; **increased FSH and LH** levels

Treatment and Prognosis

- Estrogen replacement; growth hormone (to treat short stature)
- Decreased life expectancy owing to cardiovascular abnormalities

Notes
A 4-year-old boy is brought to your office by his parents, who report that their son appears to have developmental delays. As you observe the child, you note that he has a long face with large ears and a large jaw. Neuropsychological testing reveals that the child is mentally retarded. You wonder if the child may have a chromosomal abnormality and you refer the family to a medical genetics clinic.
Fragile X Syndrome

<table>
<thead>
<tr>
<th>Etiology and Epidemiology</th>
<th>Caused by increased number of CGG repeats in the familial mental retardation (FMR-1) gene on the X chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Affects both males and females (1:2000), although females generally have less severe clinical manifestations</td>
</tr>
</tbody>
</table>

| Characteristics | Severe mental retardation with autistic characteristics; long face with large jaw and ears; macroorchidism (large testicles); connective tissue defect manifesting with hyperextensible joints and mitral valve prolapse |

| Prognosis | Lifespan is not affected, but lifelong supervision is required |

| Notes | Fragile X syndrome, along with Huntington disease and myotonic dystrophy, demonstrates anticipation, a phenomenon in which the number of repeats increases with each generation and results in more severe disease manifestations. |
BIBLIOGRAPHY

Index

11β-Hydroxylase deficiency, 171
Abdominal aortic aneurysm, 34
Abruptio placentae, 194
Absence seizure, 219
Acanthosis nigricans, 95
Achalasia, 89
Achondroplasia, 231
Acromegaly, 154
Acute drug-induced interstitial nephritis, 136
Acute lymphoblastic leukemia, 14
Acute myelogenous leukemia, 15
Acute proliferative glomerulonephritis, 130
Acute rheumatic fever, 57
Acute tubular necrosis, 136
Addison disease, 170
Adenomatous polyps of the colon, 103
Adenomyosis, 188
Adrenocortical insufficiency, 170
Adult respiratory distress syndrome, 71
Adult T-cell leukemia/lymphoma, 16

Albinism, 253
Alcoholic cirrhosis, 112
Alcoholic hepatitis, 112
Alcoholic liver disease, 112
α₁-Antitrypsin deficiency, 66
Alport syndrome, 132
Alzheimer disease, 208
Amyloidosis, 270
Amyotrophic lateral sclerosis, 211
Anemia of chronic inflammation, 13
Anencephaly, 204
Angelman syndrome, 274
Angina pectoris, 51
Anion gap, 139
Ankylosing spondylitis, 243
Anthracosis, 72
Anticipation, 277
Anti-GBM glomerulonephritis, 74
Antiphospholipid syndrome, 28
Antithrombin III deficiency, 28
Aortic dissection, 35
Aortic regurgitation, 56
Aortic stenosis, 55
Aplastic anemia, 12
Appendicitis, 106
Arnold-Chiari malformation, 204
Arteriovenous malformations, 214
Arthus reaction, 261
Asbestosis, 73
Asthma, 67
Atherosclerosis, 33
Atherosclerotic aneurysm, 34
Atopic dermatitis, 254
Atrial myxoma, 64
Atrial septal defect, 47
Autoimmune hemolytic anemias, 10
Autoimmune hepatitis, 110

Bacterial pneumonia, 78
Balanitis, 201
Barrett esophagus, 88
Basal cell carcinoma, 258
Beck triad, 62
Becker muscular dystrophy, 245
Benign prostatic hyperplasia, 199
Benign tumors of the breast, 179
Berger disease, 134
Bernard-Soulier
disease, 27
Berry aneurysm, 214
Biliary cirrhosis, 113
Bouchard nodes, 242
Bowen disease, 202
Bowenoid papulosis, 202
Breast carcinoma, 180, 181
Brenner tumor, 184
Bronchiectasis, 69
Bronchogenic carcinoma, 81, 82
Brown tumor, 164
Bruton agammaglobulinemia, 263
Budd-Chiari syndrome, 117
Buerger disease, 42
Bullous pemphigoid, 256
Burkitt lymphoma, 22
Capillary hemangioma, 43
Carcinoid syndrome, 99
Cardiac neoplasms, 64
Cardiac tamponade, 62
Cardiomyopathy, 60
Cavernous hemangioma, 43
Celiac sprue, 98
Cerebral infarction, 212
Cervical carcinoma, 191
Cervical carcinoma in situ, 191
Cervical dysplasia, 191
Charcot triad, 120, 206
Chediak-Higashi syndrome, 267
Cholangiocarcinoma, 118
Cholecystitis, 119
Cholelithiasis, 120
Chondrosarcoma, 239
Choriocarcinoma, 185, 197
Chronic bronchitis, 68
Chronic granulomatous disease of childhood, 267
Chronic lymphocytic leukemia, 17
Chronic mucocutaneous candidiasis, 265
Chronic myelogenous leukemia, 18
Chronic obstructive pulmonary disease, 66, 68
Churg-Strauss syndrome, 36
Chvostek sign, 166, 167
Chylothorax, 83
Clear cell adenocarcinoma of the vagina, 192
Clear cell tumor, 184
Coagulopathy of liver disease, 29
Coal worker pneumoconioses, 72
Coarctation of aorta, 49
Cold agglutinin disease, 10
Colorectal adenocarcinoma, 105
Common variable immunodeficiency, 264
Complex partial seizure, 219
Congenital adrenal hyperplasias, 171
Congenital CNS abnormalities, 204
Congenital hyperbilirubinemias, 108
Congenital pyloric stenosis, 92
Congestive heart failure, 63
Conn syndrome, 168
Constrictive pericarditis, 61
Contact dermatitis, 254
Cor pulmonale, 63
Corpus luteum cyst of the ovary, 182
Craniopharyngioma, 155
CREST syndrome, 250
Cretinism, 158
Cri-du-chat syndrome, 274
Crigler-Najjar syndrome, 108
Crohn disease, 96
Cryoglobulinemia, 41
Cushing syndrome, 169
Cutaneous T-cell lymphoid neoplasms, 16
Cystic fibrosis, 70

Dandy-Walker malformation, 204
Deep venous thrombosis, 28
DeQuervain thyroiditis, 161
Dermatomyositis, 249
Diabetes insipidus, 157
Diabetes Mellitus, 173, 174
Diabetic Nephropathy, 128
Diaphragmatic hernia, 92
Diffuse cortical necrosis of the kidney, 135
Diffuse large B cell lymphoma, 22
DiGeorge syndrome, 265
Dilated cardiomyopathy, 60
Disseminated intravascular coagulation, 29
Diverticulitis, 101
Diverticulosis, 101
Down syndrome, 272
Dressler syndrome, 52
Dubin-Johnson syndrome, 108
Duchenne muscular dystrophy, 245
Dysgerminoma, 185
Dysplastic nevus, 259
Eclampsia, 195
Ectopic pregnancy, 193
Eczematous dermatitis, 254
Edwards syndrome, 273
Ehlers-Danlos syndrome, 251
Gastric carcinoma, 95
Gastrinoma, 175
Gastritis, 93
Gastroesophageal reflux disease, 90
Gestational choriocarcinoma, 196
Giant cell arteritis, 38
Giant cell tumor, 238
Gigantism, 154
Gilbert syndrome, 108
Glanzmann thrombasthenia, 27
Glioblastoma multiforme, 222
Glucose-6-phosphate dehydrogenase deficiency anemia, 7
Goodpasture syndrome, 74
Gottron papules, 249
Gout, 244
Gower maneuver, 245
Graft-versus-host disease, 262
Grand mal seizure, 219
Granulomatous thyroiditis, 161
Granulosa cell tumor, 186
Graves disease, 160
Guillain-Barre syndrome, 207
Hairy cell leukemia, 16
Hand-Schüller-Christian disease, 269
Hashimoto thyroiditis, 159
Heberden nodes, 242
HELLP syndrome, 195
Hemangioblastoma, 43
Hemochromatosis, 114
Hemoglobin C disease, 8
Hemophilia A, 26
Hemophilia B, 26
Hemorrhagic stroke, 213
Hemothorax, 83
Henoch-Schönlein purpura, 40
Hepatic cirrhosis, 111
Hepatic steatosis, 112
Hepatocellular carcinoma, 118
Hereditary hemorrhagic telangiectasia, 44
Hereditary nonpolyposis colorectal cancer, 104
Hereditary spherocytosis, 6
Hirschsprung disease, 100
Histiocytosis X syndromes, 269
Hodgkin lymphoma, 21
Holoprosencephaly, 204
Horner syndrome, 82
Huntington disease, 209
Hyaline arteriosclerosis, 32
Hydatidiform mole, 196
Hydrocephalus, 216
Hydrenephrosis, 138
Hydrothorax, 83
Hyperaldosteronism, 168
Hypercoagulable states, 28
Hyper-IgM syndrome, 268
Hyperparathyroidism, 164, 165
Hypersensitivity reactions, 261
Hypersensitivity vasculitis, 40
Hypertension, 31, 32
Hypertensive renal disease, 31
Hypertrophic cardiomyopathy, 60
Hypoparathyroidism, 166
Hypospadias, 201
Idiopathic thrombocytopenic purpura, 25
IgA nephropathy, 134
Inflammatory bowel disease, 96, 102
Insulinoma, 175
Internuclear ophthalmoplegia, 206
Interstitial pneumonia, 79
Intraductal papilloma, 179
Intussusception, 97
Iron-deficiency anemia, 4
Ischemic stroke, 212
Janeway lesions, 58
Jaundice, 107
Job syndrome, 268
Juvenile rheumatoid arthritis, 248
Kaposi sarcoma, 45
Kartagener syndrome, 69
Kawasaki disease, 39
Kayser-Fleischer rings, 115
Kidney stones, 138
Kimmelsteil-Wilson nodule, 128
Klinefelter syndrome, 275
Knudson’s two-hit hypothesis, 221
Krukenberg tumor, 95

Lacunar infarcts, 212
Lambert-Eaton syndrome, 82
Leiomyoma, 189
Leiomyosarcoma, 189
Letterer-Siwe disease, 269
Leukocyte adhesion deficiency syndrome, 267
Leukocytoclastic vasculitis, 40
Leydig cell tumor, 198
Libman-Sacks endocarditis, 58
Lipoid nephrosis, 125
Liver adenoma, 118
Liver angiosarcoma, 118
Lupus nephropathy, 129

Malignant hypertension, 32
Malignant melanoma, 259
Malignant mesothelioma, 73
Marantic endocarditis, 58

Marfan syndrome, 251
Maturity-onset diabetes of the young (MODY), 173
McCune-Albright syndrome, 232
Meckel diverticulum, 97
Meconium ileus, 70
Medulloblastoma, 226
Megaloblastic anemias, 5
Membranoproliferative glomerulonephritis, 133
Membranous glomerulonephritis, 126
Meningioma, 223
Meningitis, 220
Meningocele, 204
Meningomyelocele, 204
Metabolic acidosis, 139
Metabolic alkalosis, 140
Microscopic polyangiitis, 37
Minimal change disease, 125
Mitral regurgitation, 54
Mitral stenosis, 53
Mitral valve prolapse, 54
Monoclonal gammopathy of undetermined significance (MGUS), 23
Mucinous cystadenocarcinoma, 184
Mucinous cystadenoma, 184
Mucocutaneous lymph node syndrome, 39
Multinodular goiter, 162
Multiple myeloma, 23
Multiple polyposis syndromes, 104
Multiple sclerosis, 206
Myasthenia gravis, 218
Mycosis fungoides, 16
Myelofibrosis with myeloid metaplasia, 20
Myocardial infarction, 52
Myocarditis, 59
Myoclonic seizure, 219
Myositis, 249
Myotonic dystrophy, 246
Myxedema, 158

Neonatal hyperbilirubinemia, 108
Neonatal respiratory distress syndrome, 71
Neural tube defects, 204
Neuroblastoma, 228
Neurofibromatosis, 229
Nikolsky sign, 256
Non-Hodgkin lymphoma, 22
Obstructive sleep apnea, 84
Oligodendroglioma, 224
Organ rejection, 262
Osler nodes, 58
Osler-Weber-Rendu syndrome, 44
Osteitis fibrosa cystica, 164
Osteoarthritis, 242
Osteoblastoma, 237
Osteochondroma, 237
Osteogenesis imperfecta, 231
Osteoid osteoma, 237
Osteomalacia, 235
Osteopetrosis, 232
Osteoporosis, 233
Osteosarcoma, 239
Ovarian cysts, 182
Ovarian fibroma-thecoma, 186
Ovarian tumors of germ cell origin, 185
Ovarian tumors of sex cord-stromal origin, 186
Ovarian tumors of surface epithelium origin, 184
Paget disease of bone, 234
Pancreatic carcinoma, 123
Pancreatitis, 122
Papillary serous cystadenocarcinoma, 184
Paraneoplastic pemphigus, 256
Parathyroid adenoma, 164
Parinaud syndrome, 225
Parkinson disease, 210
Parkinsonism, 210
Patau syndrome, 273
Patent ductus arteriosus, 48
Pelvic inflammatory disease, 193
Pemphigus vulgaris, 256
Penile cancers, 202
Penile diseases, 201
Peptic ulcer disease, 94
Pericarditis, 61
Pernicious anemia, 5
Peutz-Jeghers syndrome, 104
Peyronie disease, 201
Pheochromocytoma, 172
Phimosis, 201
Phyllodes tumor, 179
Pick disease, 208
Pilocytic astrocytoma, 222
Pineal tumors, 225
Pituitary cachexia, 152
Placenta accrete, 194
Placenta previa, 194
Placental attachment abnormalities, 194
Plummer-Vinson syndrome, 4
Pneumoconioses, 72
Pneumocystis carinii pneumonia, 79
Pneumonia, 78, 79
Pneumothorax, 83
Polyarteritis nodosa, 36
Polycystic kidney disease, 137
Polycystic ovarian syndrome, 183
Polycythemia vera, 19
Polyhydramnios, 87
Polymyalgia rheumatica, 38
Polymyositis, 249
Portal hypertension, 116
Postinfectious encephalitis, 207
Poststreptococcal glomerulonephritis, 130
PPD test, 80
Prader-Willi syndrome, 274
Preeclampsia, 195
Primary biliary cirrhosis, 113
Primary hyperparathyroidism, 164
Primary sclerosing
colonitis, 102, 113
Prinzmetal angina, 51
Prolactinoma, 153
Prostate carcinoma, 200
Protein C or S deficiency, 28
Prothrombin mutation, 28
Pseudogout, 244
Pseudohypoparathyroidism, 167
Psoriasis, 255
Psoriatic arthritis, 243

Pulmonary embolism, 76
Pulmonary hypertension, 77
Pyelonephritis, 135
Pyloric stenosis, 92
Rapidly progressive (crescentic)
glomerulonephritis, 131
Reactive arthritis, 243
Renal cell carcinoma, 144
Renal failure, 143
Renal osteodystrophy, 235
Renal papillary necrosis, 135
Respiratory acidosis, 141
Respiratory alkalosis, 142
Restrictive cardiomyopathy, 60
Retinoblastoma, 221
Rhabdomyoma, 64
Rheumatic heart
disease, 57
Rheumatoid arthritis, 241
Rickets, 235
Rotor syndrome, 108
<table>
<thead>
<tr>
<th>Medical Condition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcoidosis</td>
<td>75</td>
</tr>
<tr>
<td>Sarcoma botryoides</td>
<td>192</td>
</tr>
<tr>
<td>Schwannoma</td>
<td>225</td>
</tr>
<tr>
<td>Scurvy</td>
<td>236</td>
</tr>
<tr>
<td>Secondary hyperparathyroidism</td>
<td>165</td>
</tr>
<tr>
<td>Secondary hypertension</td>
<td>31</td>
</tr>
<tr>
<td>Secondary polycythemia</td>
<td>19</td>
</tr>
<tr>
<td>Seizures</td>
<td>219</td>
</tr>
<tr>
<td>Selective IgA deficiency</td>
<td>264</td>
</tr>
<tr>
<td>Seminoma</td>
<td>197</td>
</tr>
<tr>
<td>Seronegative spondyloarthropathies</td>
<td>243</td>
</tr>
<tr>
<td>Serous cystadenoma</td>
<td>184</td>
</tr>
<tr>
<td>Sertoli cell tumor</td>
<td>198</td>
</tr>
<tr>
<td>Sertoli-Leydig cell tumor</td>
<td>186</td>
</tr>
<tr>
<td>Serum sickness</td>
<td>261</td>
</tr>
<tr>
<td>17α-Hydroxylase deficiency</td>
<td>171</td>
</tr>
<tr>
<td>Severe combined immunodeficiency disease</td>
<td>266</td>
</tr>
<tr>
<td>Sézary syndrome</td>
<td>16</td>
</tr>
<tr>
<td>Sheehan syndrome</td>
<td>152</td>
</tr>
<tr>
<td>Sicca syndrome</td>
<td>248</td>
</tr>
<tr>
<td>Sickle cell anemia</td>
<td>8</td>
</tr>
<tr>
<td>Sideroblastic anemia</td>
<td>4</td>
</tr>
<tr>
<td>Silicosis</td>
<td>72</td>
</tr>
<tr>
<td>Simple partial seizure</td>
<td>219</td>
</tr>
<tr>
<td>Sjögren syndrome</td>
<td>248</td>
</tr>
<tr>
<td>Small lymphocytic lymphoma</td>
<td>22</td>
</tr>
<tr>
<td>Spina bifida</td>
<td>204</td>
</tr>
<tr>
<td>Spina bifida occulta</td>
<td>204</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the bladder</td>
<td>145</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the penis</td>
<td>202</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the skin</td>
<td>257</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the vagina</td>
<td>192</td>
</tr>
<tr>
<td>Stable angina</td>
<td>51</td>
</tr>
<tr>
<td>Status epilepticus</td>
<td>219</td>
</tr>
<tr>
<td>Stein-Leventhal syndrome</td>
<td>183</td>
</tr>
<tr>
<td>Stevens-Johnson syndrome</td>
<td>254</td>
</tr>
<tr>
<td>Struma ovarii</td>
<td>185</td>
</tr>
<tr>
<td>Sturge-Weber syndrome</td>
<td>44</td>
</tr>
<tr>
<td>Subacute thyroiditis</td>
<td>161</td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>214</td>
</tr>
<tr>
<td>Subdural hematoma</td>
<td>215</td>
</tr>
<tr>
<td>Syndrome of inappropriate ADH</td>
<td>156</td>
</tr>
<tr>
<td>Syphilitic aneurysm</td>
<td>34</td>
</tr>
<tr>
<td>Syringomyelia</td>
<td>217</td>
</tr>
</tbody>
</table>
Systemic lupus erythematosus, 247
Systemic sclerosis, 250
Takayasu arteritis, 38
Temporal arteritis, 38
Tension pneumothorax, 83
Teratoma, 185, 197
Testicular germ cell tumors, 197
Testicular lymphoma, 198
Testicular sex cord-gonadal stroma tumors, 198
Tetralogy of Fallot, 50
Thalassemias, 9
Theca-lutein cyst of the ovary, 182
Thromboangiitis obliterans, 42
Thrombotic thrombocytopenic purpura, 25
Thyroid adenoma, 163
Thyroid carcinoma, 163
Tonic-Clonic seizure, 219
Toxic megacolon, 102
Tracheoesophageal fistula, 87
Transient ischemic attack, 212
Transitional cell carcinoma, 145
Transposition of great vessels, 50
Tropical sprue, 98
Trousseau sign, 166, 167
Trousseau syndrome, 123
Tuberculosis, 80
Tuberous sclerosis, 205
Tubular adenomas, 103
Tubulovillous adenomas, 103
Tumors of gallbladder and extrahepatic biliary ducts, 121
Turcot syndrome, 104
Turner syndrome, 276
21β-Hydroxylase deficiency, 171
Ulcerative colitis, 102
Unstable angina, 51
Urolithiasis, 138
Uterine fibroids, 189
Ventricular septal defect, 47
Villous adenomas, 103
Viral hepatitis, 109
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virchow node</td>
<td>95</td>
</tr>
<tr>
<td>Virchow triad</td>
<td>28, 76</td>
</tr>
<tr>
<td>Vitamin B\textsubscript{12} deficiency anemia</td>
<td>5</td>
</tr>
<tr>
<td>Vitamin K deficiency</td>
<td>26</td>
</tr>
<tr>
<td>Vitiligo</td>
<td>253</td>
</tr>
<tr>
<td>Volvulus</td>
<td>97</td>
</tr>
<tr>
<td>von Hippel-Lindau disease</td>
<td>43</td>
</tr>
<tr>
<td>von Willebrand disease</td>
<td>27</td>
</tr>
<tr>
<td>WAGR complex</td>
<td>146</td>
</tr>
<tr>
<td>Waldenstrom macroglobulinemia</td>
<td>24</td>
</tr>
<tr>
<td>Warm antibody autoimmune hemolytic anemia</td>
<td>10</td>
</tr>
<tr>
<td>Waterhouse-Friderichsen syndrome</td>
<td>170</td>
</tr>
<tr>
<td>Watershed infarction</td>
<td>212</td>
</tr>
<tr>
<td>Wegener granulomatosis</td>
<td>37</td>
</tr>
<tr>
<td>Werdnig-Hoffmann syndrome</td>
<td>211</td>
</tr>
<tr>
<td>Whipple disease</td>
<td>98</td>
</tr>
<tr>
<td>Whipple triad</td>
<td>175</td>
</tr>
<tr>
<td>Wilms tumor</td>
<td>146</td>
</tr>
<tr>
<td>Wilson disease</td>
<td>115</td>
</tr>
<tr>
<td>Winter’s formula</td>
<td>139</td>
</tr>
<tr>
<td>Wiskott-Aldrich syndrome</td>
<td>263</td>
</tr>
<tr>
<td>Xanthomas</td>
<td>33</td>
</tr>
<tr>
<td>Xeroderma pigmentosum</td>
<td>258</td>
</tr>
<tr>
<td>XYY syndrome</td>
<td>275</td>
</tr>
<tr>
<td>Yolk sac tumor</td>
<td>185</td>
</tr>
<tr>
<td>Zollinger-Ellison syndrome</td>
<td>175</td>
</tr>
</tbody>
</table>